Numerous studies expose the potential of brannerite to become a good matrix, concentrating fission products and actinides. Minerals can complement the data collected from the synthetic materials and offer an advantage of a long-time exposure to radiation. Natural metamict brannerite from Akchatau, Kazakhstan, and its annealed sample were studied by EPMA, Raman spectroscopy, TGA, DSC, XRD and HTXRD. The radioactivity of pristine and annealed samples of brannerite was measured. Brannerite from Akchatau is characterized by the absence of significant amounts of REE and yttrium. The studied brannerite regains its structure at a temperature ~650 °C, revealed by the HTXRD and DSC. HTXRD was also performed on the annealed recrystallized brannerite. The thermal expansion for brannerite has been determined for the first time. The brannerite structure expands anisotropically with temperature increase. All the thermal expansion coefficients are positive except for . The decreasing beta parameter indicates a "shear structural deformation". The angle between the 1st axis of the tensor and the crystallographic axis decreases with the increase of the temperature. The structure expands mostly in the direction, approaching the bisector of the angle. Brannerite has a low CTE at room temperature- = 16 × 10 °C, which increases up to 39.4 × 10 °C at 1100 °C. In general, the thermal stability of brannerite is comparable to that of the other perspective oxide radioactive waste-immobilizing matrices (e.g., ZrO, CePO, CaTiO, CaZrTiO). The calculated thermal expansion of brannerite and the understanding of its underlying crystal chemical mechanisms may contribute to the behavior prediction of the material (both metamict and crystalline) at high temperatures.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9962792PMC
http://dx.doi.org/10.3390/ma16041719DOI Listing

Publication Analysis

Top Keywords

thermal expansion
16
brannerite
12
expansion brannerite
12
brannerite akchatau
12
akchatau kazakhstan
8
structure expands
8
thermal
5
chemistry recrystallization
4
recrystallization thermal
4
expansion
4

Similar Publications

In recent decades significant forest expansion into treeless alpine zones has been observed across global mountain ranges, including the Alps, driven by a complex interplay of global warming and land-use changes. The upward shift of treelines has far-reaching implications for ecosystem functioning, biodiversity, and biogeochemical cycles. However, climate variables alone account for only a fraction of treeline dynamics, highlighting substantial research gaps concerning the influence of non-climatic factors.

View Article and Find Full Text PDF

Objective: Photopolymerized resin composites are widely used as dental filling materials. However, the shrinkage stress generated during photopolymerization can lead to marginal microcracks and eventual restoration failure. Accurate assessment of the stress evolution in dental restorations, particularly in complex cavity geometries, is critical for improving the performance and longevity of the dental filling materials.

View Article and Find Full Text PDF

Structural and magnetic phase transitions in EuLaFe(BO) (x = 0, 0.18).

Acta Crystallogr B Struct Sci Cryst Eng Mater

February 2025

Kirensky Institute of Physics, Federal Research Center KSC SB RAS, Krasnoyarsk 660036, Russian Federation.

The crystal structures and hyperfine magnetic parameters of EuFe(BO) and mixed EuLaFe(BO) were studied over a wide temperature range in order to analyze correlations of the structural and magnetic features and the phase transitions in multiferroic compounds of the rare-earth iron borate family. The chemical compositions of the crystals are reported from X-ray fluorescence analysis. The crystal structures of EuFe(BO) and EuLaFe(BO) were determined using single-crystal X-ray diffraction in the temperature range 25-500 K.

View Article and Find Full Text PDF

A strategy to reduce thermal expansion and achieve higher mechanical properties in iron alloys.

Nat Commun

January 2025

Department of Physical Chemistry, Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, China.

Article Synopsis
  • Iron alloys, particularly steels and magnetic materials, are crucial in various industries but struggle with high thermal expansion, limiting their precision applications.
  • A new strategy has been developed to embed a nano-scale negative thermal expansion (NTE) phase within the iron matrix, effectively reducing the thermal expansion coefficient of an example alloy (Fe-Zr10-Nb6) to about half of standard iron.
  • This alloy demonstrates impressive mechanical properties, achieving 1.5 GPa compressive strength and 17.5% ultimate strain, while the NTE phase helps counterbalance the thermal expansion, indicating a promising method for creating low thermal expansion iron alloys with enhanced performance.
View Article and Find Full Text PDF

An Ultrastable Integrated Anode with ∼95 wt.% SiO via In Situ Electrode-Scale Conformal Coating.

ACS Nano

January 2025

Hunan Province Key Laboratory for Advanced Carbon Materials and Applied Technology, College of Materials Science and Engineering, Hunan University, Changsha 410082, China.

SiO-based anodes, considered the most promising candidate for high-energy density batteries, have long been bothered by mechanical integrity issues. Research efforts focus on particle modifications, often overlooking the enhancement of interparticle connections, which can reduce the active material content within the electrode. Herein, an integrated electrode with strong covalent bonding at the electrode scale is designed, achieving excellent mechanical stability with ∼95 wt.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!