Numerous studies expose the potential of brannerite to become a good matrix, concentrating fission products and actinides. Minerals can complement the data collected from the synthetic materials and offer an advantage of a long-time exposure to radiation. Natural metamict brannerite from Akchatau, Kazakhstan, and its annealed sample were studied by EPMA, Raman spectroscopy, TGA, DSC, XRD and HTXRD. The radioactivity of pristine and annealed samples of brannerite was measured. Brannerite from Akchatau is characterized by the absence of significant amounts of REE and yttrium. The studied brannerite regains its structure at a temperature ~650 °C, revealed by the HTXRD and DSC. HTXRD was also performed on the annealed recrystallized brannerite. The thermal expansion for brannerite has been determined for the first time. The brannerite structure expands anisotropically with temperature increase. All the thermal expansion coefficients are positive except for . The decreasing beta parameter indicates a "shear structural deformation". The angle between the 1st axis of the tensor and the crystallographic axis decreases with the increase of the temperature. The structure expands mostly in the direction, approaching the bisector of the angle. Brannerite has a low CTE at room temperature- = 16 × 10 °C, which increases up to 39.4 × 10 °C at 1100 °C. In general, the thermal stability of brannerite is comparable to that of the other perspective oxide radioactive waste-immobilizing matrices (e.g., ZrO, CePO, CaTiO, CaZrTiO). The calculated thermal expansion of brannerite and the understanding of its underlying crystal chemical mechanisms may contribute to the behavior prediction of the material (both metamict and crystalline) at high temperatures.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9962792 | PMC |
http://dx.doi.org/10.3390/ma16041719 | DOI Listing |
Sci Total Environ
January 2025
Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, 38000 Grenoble, France.
In recent decades significant forest expansion into treeless alpine zones has been observed across global mountain ranges, including the Alps, driven by a complex interplay of global warming and land-use changes. The upward shift of treelines has far-reaching implications for ecosystem functioning, biodiversity, and biogeochemical cycles. However, climate variables alone account for only a fraction of treeline dynamics, highlighting substantial research gaps concerning the influence of non-climatic factors.
View Article and Find Full Text PDFDent Mater
January 2025
Department of Engineering Mechanics, School of Civil Engineering, Wuhan University, Wuhan, Hubei 430072, China; Wuhan University Shenzhen Research Institute, Shenzhen 518108, China. Electronic address:
Objective: Photopolymerized resin composites are widely used as dental filling materials. However, the shrinkage stress generated during photopolymerization can lead to marginal microcracks and eventual restoration failure. Accurate assessment of the stress evolution in dental restorations, particularly in complex cavity geometries, is critical for improving the performance and longevity of the dental filling materials.
View Article and Find Full Text PDFActa Crystallogr B Struct Sci Cryst Eng Mater
February 2025
Kirensky Institute of Physics, Federal Research Center KSC SB RAS, Krasnoyarsk 660036, Russian Federation.
The crystal structures and hyperfine magnetic parameters of EuFe(BO) and mixed EuLaFe(BO) were studied over a wide temperature range in order to analyze correlations of the structural and magnetic features and the phase transitions in multiferroic compounds of the rare-earth iron borate family. The chemical compositions of the crystals are reported from X-ray fluorescence analysis. The crystal structures of EuFe(BO) and EuLaFe(BO) were determined using single-crystal X-ray diffraction in the temperature range 25-500 K.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Physical Chemistry, Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, China.
ACS Nano
January 2025
Hunan Province Key Laboratory for Advanced Carbon Materials and Applied Technology, College of Materials Science and Engineering, Hunan University, Changsha 410082, China.
SiO-based anodes, considered the most promising candidate for high-energy density batteries, have long been bothered by mechanical integrity issues. Research efforts focus on particle modifications, often overlooking the enhancement of interparticle connections, which can reduce the active material content within the electrode. Herein, an integrated electrode with strong covalent bonding at the electrode scale is designed, achieving excellent mechanical stability with ∼95 wt.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!