In recent years, interest in sustainability has significantly increased in many industrial sectors. Sustainability can be achieved with both lightweight design and eco-friendly manufacturing processes. For example, concerns on the use of thermoset composite materials, with a lightweight design and a high specific strength, have arisen, since thermoset resins are not fully recyclable and are mainly petrol based. A possible solution to this issue is the replacement of the thermoset matrix with a recyclable or renewable matrix, such as bio-based resin. However, the mechanical properties of composites made with bio-based resin should be carefully experimentally assessed to guarantee a safe design and the structural integrity of the components. In this work, the quasi-static mechanical properties of composite specimens (eight layers of carbon fiber fabric) made with commercially available epoxy and a bio-based epoxy resins (31% bio content) are compared. Tensile tests on the investigated resins and tensile, compression, shear and flexural tests have been carried out on composite laminates manufactured with the two investigated resins. A finite element model has been calibrated in the LS-Dyna environment using the experimentally assessed mechanical properties. The experimental results have proven that the two composites showed similar quasi-static properties, proving that bio-based composite materials can be reliably employed as a substitute for epoxy resins without affecting the structural integrity of the component but lowering their carbon footprint.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9960727 | PMC |
http://dx.doi.org/10.3390/ma16041601 | DOI Listing |
J Mol Model
January 2025
Laboratory of Nanostructures and Advanced Materials, Mechanics and Thermofluids, Faculty of Sciences and Technologies, Hassan II University of Casablanca, B.P 146, 20650, Mohammedia, Morocco.
Context: Designing efficient sensitive materials for the detection of volatile organic compounds (VOCs) such as ethanol, acetone, and benzene is stringent owing to the significant environmental and health risks induced by these compounds, in addition to their role as biomarkers for chronic diseases and food quality. This study investigates the adsorption mechanisms of VOC molecules (ethanol, acetone, and benzene) on both non-oxidized and oxidized SnO (110) monolayers and identifies the most suitable surface for gas sensing applications. For this, we examined structural properties, adsorption energies, density of states, gas responses, and recovery times.
View Article and Find Full Text PDFClin Oral Investig
January 2025
Department of Conservative Dentistry and Bucofacial Prostheses, Faculty of Odontology, Complutense University of Madrid, Madrid, Spain.
Objectives: This study aimed to assess the vertical misfit at the implant-abutment interface in external and internal connections across various implant brands, comparing original milled titanium abutments with laser-sintered cobalt-chromium (Co-Cr) abutments.
Materials And Methods: A total of 160 implants from four different brands were utilized, with 80 featuring external connections (EC) and 80 internal connections (IC). Original milled titanium abutments (n = 160) and Co-Cr laser-sintered abutments (n = 160) were randomly attached to each connection type, following the manufacturer's recommended torque.
ACS Appl Mater Interfaces
January 2025
Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill 27599, United States.
Architecturally hindered crystallization of bottlebrush graft copolymers offers a reaction- and solvent-free pathway for creating injectable elastomers with tissue-mimetic softness. Currently, injectable materials involve solvents and chemical reactions, leading to uncontrolled swelling, leaching of unreacted moieties, and side reactions with tissue. To address this issue, bottlebrush copolymers with a poly(ethylene glycol) (PEG) amorphous block and crystallizable poly(lactic acid) (PLA) grafted chains (A--B) were synthesized, with grafted chains of controlled length arranged along the backbone at controlled spacing.
View Article and Find Full Text PDFLangmuir
January 2025
Department of Physics, SRM University AP Andhra Pradesh, Mangalagiri, Andhra Pradesh 522502, India.
This article reports facile fabrication of a multifunctional smart surface having superhydrophobic self-cleaning property, superoleophilicity, and antimicrobial property. These smart surfaces have been synthesized using the stereolithography (SLA) method of the additive manufacturing technique. SLA is a fast additive manufacturing technique used to create complex parts with intricate geometries.
View Article and Find Full Text PDFJ Mater Chem B
January 2025
Engineering Research Centre for Biomedical Materials of Ministry of Education, Key Laboratory for Ultrafine Materials of Ministry of Education, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China.
Magnesium oxide (MgO) is known for its bioactivity and osteoconductivity when incorporated into biodegradable poly(lactic acid) (PLA), whereas the weak interfacial bonding between MgO microspheres (mMPs) and PLA often leads to suboptimal composite properties with uncontrollable functionality. Conjugation of mMPs with PLA may offer a good way to enhance their compatibility. In this study, we systematically investigated two grafting techniques, solution grafting (Sol) and melt grafting (Mel), to decorate poly (D-lactic acid) (PDLA) on mMPs pre-treated by prioritized hydration to obtain Sol MPs and Mel MPs, in order to optimize the grafting efficiency and improve their controllability in the properties including the crystal structure and surface morphology.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!