A seepage model based on smoothed particle hydrodynamics (SPH) was developed for the seepage simulation of pore water in porous rock mass media. Then, the effectiveness of the seepage model was proved by a two-dimensional seepage benchmark example. Under the framework of SPH based on the total Lagrangian formula, an extended hydro-mechanical coupling model (EHM-TLF-SPH) was proposed to simulate the crack propagation and coalescence process of rock samples with prefabricated flaws under hydraulic and compressive loads. In the SPH program, the Lagrangian kernel was used to approximate the equations of motion of particles. Then, the influence of flaw water pressure on crack propagation and coalescence models of rock samples with single or two parallel prefabricated flaws was studied by two numerical examples. The simulation results agreed well with the test results, verifying the validity and accuracy of the EHM-TLF-SPH model. The results showed that with the increase in flaw water pressure, the crack initiation angle and stress of the wing crack decreased gradually. The crack initiation location of the wing crack moved to the prefabricated flaw tip, while the crack initiation location of the shear crack was far away from the prefabricated flaw tip. In addition, the influence of the permeability coefficient and flaw water pressure on the osmotic pressure was also investigated, which revealed the fracturing mechanism of hydraulic cracking engineering.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9959263PMC
http://dx.doi.org/10.3390/ma16041572DOI Listing

Publication Analysis

Top Keywords

crack propagation
12
flaw water
12
water pressure
12
crack initiation
12
crack
9
extended hydro-mechanical
8
hydro-mechanical coupling
8
coupling model
8
model based
8
based smoothed
8

Similar Publications

In this work, the fracture mechanism of winding carbon-fiber-reinforced plastics (CFRPs) based on epoxy matrices reinforced by polysulfone film was investigated. Two types of polymer matrices were used: epoxy oligomer (EO) cured by iso-methyltetrahydrophthalic anhydride (iso-MTHPA), and EO-modified polysulfone (PSU) with active diluent furfuryl glycidyl ether (FGE) cured by iso-MTHPA. At the winding stage, the reinforcing film was placed in the middle layer of the CFRP.

View Article and Find Full Text PDF

The range of sensor technologies for structural health monitoring (SHM) systems is expanding as the need for ongoing structural monitoring increases. In such a case, damage to the monitored structure elements is detected using an integrated network of sensors operating in real-time or periodically in frequent time stamps. This paper briefly introduces a new type of sensor, called a Customized Crack Propagation Sensor (CCPS), which is an alternative for crack gauges, but with enhanced functional features and customizability.

View Article and Find Full Text PDF

Hydrogen embrittlement is a critical issue for zirconium alloys, which receives long-term attention in their applications. The formation of brittle hydrides facilitates crack initiation and propagation, thereby significantly reducing the material's ductility. This study investigates the tensile properties and hydride morphology of a novel zirconium alloy under different hydrogen-charging current densities ranging from 0 to 300 mA/cm, aiming to clarify the influence of hydrides on the fracture behavior of the alloy.

View Article and Find Full Text PDF

The global asphalt production growth rate exceeded 10% in the past decade, and over 90% of the world's road surfaces are generated from asphalt materials. Therefore, the issue of asphalt aging has been widely researched. In this study, the aging of asphalt thin films under various natural conditions was studied to prevent the distortion of indoor simulated aging and to prevent the extraction of asphalt samples from road surfaces from impacting the aged asphalt.

View Article and Find Full Text PDF

Effects of Pre-Deformation in Corrosion Fatigue Crack Growth of Al-Mg-Zn Alloy.

Materials (Basel)

January 2025

State Key Laboratory of Precision Manufacturing for Extreme Service Performance, Central South University, Changsha 410083, China.

This study investigated the effect of pre-deformation on the corrosion fatigue crack propagation (CFCG) of Al-Mg-Zn alloy in a corrosive environment. Tensile tests at different pre-deformation levels and molecular dynamics simulations analyzed changes in dislocation density. Corrosion fatigue experiments were conducted in a 3.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!