Inverse Design of Micro Phononic Beams Incorporating Size Effects via Tandem Neural Network.

Materials (Basel)

School of Mechanical and Electrical Engineering, Hainan University, Haikou 570228, China.

Published: February 2023

Phononic crystals of the smaller scale show a promising future in the field of vibration and sound reduction owing to their capability of accurate manipulation of elastic waves arising from size-dependent band gaps. However, manipulating band gaps is still a major challenge for existing design approaches. In order to obtain the microcomposites with desired band gaps, a data drive approach is proposed in this study. A tandem neural network is trained to establish the mapping relation between the flexural wave band gaps and the microphononic beams. The dynamic characteristics of wave motion are described using the modified coupled stress theory, and the transfer matrix method is employed to obtain the band gaps within the size effects. The results show that the proposed network enables feasible generated micro phononic beams and works better than the neural network that outputs design parameters without the help of the forward path. Moreover, even size effects are diminished with increasing unit cell length, the trained model can still generate phononic beams with anticipated band gaps. The present work can definitely pave the way to pursue new breakthroughs in micro phononic crystals and metamaterials research.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9962746PMC
http://dx.doi.org/10.3390/ma16041518DOI Listing

Publication Analysis

Top Keywords

band gaps
24
micro phononic
12
phononic beams
12
size effects
12
neural network
12
tandem neural
8
phononic crystals
8
band
6
gaps
6
phononic
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!