The constantly expanding civilization and construction industry pose new challenges for a sustainable development economy. Aiming to protect the environment is often associated with waste management, thereby reducing the number of landfills. The management of recycled concrete aggregate (RCA) from building demolition and its reuse in construction perfectly fits into this trend. The characteristics of post-industrial and recycled materials are not homogeneous as is usually the case with natural materials. This leads to a search for solutions to determine the parameters in the simplest possible manner and with as few resources as possible, while eliminating estimation risks. This task can be solved using machine learning, whose algorithms are increasingly used and developed in many areas of life and industry. The research in this study is aimed at comparing the effectiveness of k-Nearest Neighbors (k-NN) and Artificial Neural Network (ANN) algorithms in determining the permeability coefficient to a linear regression model. This parameter has an important role from the perspective of the application of RCA in civil engineering, particularly in earth construction. Two different RCA materials with different origins and properties were used in the study. The filtration test for each sample was pre-prepared using different compaction energies of 0.17 and 0.59 J/cm and for loosely packed samples. Differences in the structures of the test results are presented for both materials. The lowest prediction errors were obtained for the k-NN model. This algorithm obtained for the training sample a coefficient of determination (R) equal to 0.947 and for the test sample an R equal to 0.980. In the case of ANN, the coefficient of determination was in the range of 0.877-0.936. An important part of the study was the interpretation with SHAP of the obtained models, allowing insight into which parameters influenced the predictions. That is significant and novel, considering the heterogeneity of the materials studied, and provides a rationale for further research in this area.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9962052 | PMC |
http://dx.doi.org/10.3390/ma16041500 | DOI Listing |
Int J Legal Med
January 2025
Unit of Forensic Medicine, Department of Diagnostics and Public Health, University of Verona, Verona, Italy.
Pathology has benefited from the rapid progress of image-digitizing technology during the last decade. However, the application of digital whole slide images (WSI) in forensic pathology still needs to be improved. WSI validation is crucial to ensure diagnostic performance, at least equivalent to glass slides and light microscopy.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Institute of Photonics & Quantum Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK.
There has been a significant recent surge in the number of studies interrogating chiral molecules in the gas phase using photoelectron circular dichroism (PECD) and related techniques. These investigations have revealed new fundamental insights into the structure and dynamics of chiral species and, furthermore, have the potential to revolutionize the field of chiral analysis for more practical and industrial applications. As it has been just over 20 years since the first PECD imaging experiments were demonstrated - and 10 years since the last dedicated general perspective article on the topic - a new overview now seems extremely timely.
View Article and Find Full Text PDFChem Soc Rev
January 2025
The Institute for Advanced Studies, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University, 299 Bayi Road, Wuhan, 430072, China.
The Brook rearrangement has emerged as one of the most pivotal transformations in organic chemistry, with broad applications spanning organic synthesis, drug design, and materials science. Since its discovery in the 1950s, the anion-mediated Brook rearrangement has been extensively studied, laying the groundwork for the development of numerous innovative reactions. In contrast, the radical Brook rearrangement has garnered comparatively less attention, primarily due to the challenges associated with the controlled generation of alkoxyl radicals under mild conditions.
View Article and Find Full Text PDFiScience
January 2025
School of Biomedical Sciences, University of Leeds, Leeds, UK.
The muscle synergy concept suggests that the human motor system is organized into functional modules composed of muscles "" toward common task goals. This study offers a nuanced computational perspective to muscle synergies, where muscles interacting across multiple scales have functionally similar, complementary, and independent roles. Making this viewpoint implicit to a methodological approach applying Partial Information Decomposition to large-scale muscle activations, we unveiled nested networks of functionally diverse inter- and intramuscular interactions with distinct functional consequences on task performance.
View Article and Find Full Text PDFDrug Des Devel Ther
January 2025
Clinical Pharmacology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China.
Food-Drug Interaction (FDI) refers to the phenomenon where food affects the pharmacokinetic or pharmacodynamic characteristics of a drug, significantly altering the drug's absorption rate or absorption extent. These Interactions are considered as a primary determinant in influencing the bioavailability of orally administered drugs within the gastrointestinal tract. The impact of food on drug absorption is complex and multifaceted, potentially involving alterations in gastrointestinal physiology, increases in splanchnic blood flow rates, and shifts in the gut microbiota's composition.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!