Molecular beam epitaxy is widely used for engineering low-dimensional materials. Here, we present a novel extension of the capabilities of this method by assisting epitaxial growth with the presence of an external magnetic field (MF). MF-assisted epitaxial growth was implemented under ultra-high vacuum conditions thanks to specialized sample holders for generating in-plane or out-of-plane MF and dedicated manipulator stations with heating and cooling options. The significant impact of MF on the magnetic properties was shown for ultra-thin epitaxial magnetite films grown on MgO(111). Using in situ and ex situ characterization methods, scanning tunneling microscopy, conversion electron Mössbauer spectroscopy, and the magneto-optic Kerr effect, we showed that the in-plane MF applied during the reactive deposition of 10 nm FeO(111)/MgO(111) heterostructures influenced the growth morphology of the magnetite films, which affects both in-plane and out-of-plane characteristics of the magnetization process. The observed changes are explained in terms of modification of the effective magnetic anisotropy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9964408 | PMC |
http://dx.doi.org/10.3390/ma16041485 | DOI Listing |
Astrobiology
January 2025
NASA Goddard Space Flight Center, Greenbelt, Maryland, USA.
Meteoritic impacts on planetary surfaces deliver a significant amount of energy that can produce prebiotic organic compounds such as cyanides, which may be a key step to the formation of biomolecules. To study the chemical processes of impact-induced organic synthesis, we simulated the physicochemical processes of hypervelocity impacts (HVI) in experiments with both high-speed C projectiles and laser ablation. In the first approach, a C beam was accelerated to collide with ammonium nitrate (NHNO) to reproduce the shock process and plume generation of meteoritic impacts on nitrogen-rich planetary surfaces.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala 75651, Sweden.
Per- and polyfluoroalkyl substances (PFAS)-containing firefighting foam have been used in stationary fire suppression systems for several decades. However, there is a lack of research on how to decontaminate PFAS-contaminated infrastructure and evaluate treatment efficiency. This study assessed the removal of PFAS from stainless steel pipe surfaces using different cleaning agents (tap water, methanol, and aqueous solutions containing 10 and 20 wt % of butyl carbitol (BC)) at different temperatures (20 °C, 40 °C, and 70 °C).
View Article and Find Full Text PDFMagn Reson Med
January 2025
F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA.
Purpose: We hypothesized that radiation-induced tubulointerstitial changes in the kidney can be assessed using MRI-based T relaxation time measurements.
Methods: We performed MRI, histology, and serum biochemistry in two mouse models of radiation nephropathy: one involving external beam radiotherapy and the other using internal irradiation with an α-particle-emitting actinium-225 radiolabeled antibody. We compared the mean T values of different renal compartments between control and external beam radiotherapy or α-particle-emitting actinium-225 radiolabeled antibody-treated groups and between the two radiation-treated groups using a Wilcoxon rank-sum test.
EJNMMI Radiopharm Chem
January 2025
Department of Radioactive Materials, Instituto Nacional de Investigaciones Nucleares, Ocoyoacac, 52750, Mexico.
Background: Cancer immunotherapy is a relatively new approach to cancer treatment. Peptides that target specific pathways and cells involved in immunomodulation can potentially improve the efficacy of cancer therapy. Recently, we reported iPD-L1 as a novel inhibitor peptide that specifically targets the cancer cell ligand PD-L1 (programmed death ligand 1).
View Article and Find Full Text PDFNat Mater
January 2025
Department of Physics, Harvard University, Cambridge, MA, USA.
Atomically thin van der Waals (vdW) films provide a material platform for the epitaxial growth of quantum heterostructures. However, unlike the remote epitaxial growth of three-dimensional bulk crystals, the growth of two-dimensional material heterostructures across atomic layers has been limited due to the weak vdW interaction. Here we report the double-sided epitaxy of vdW layered materials through atomic membranes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!