Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
This paper introduces novel research into specific mechanical properties of composites produced by 3D printing using Continuous-Fiber Fabrication (CFF). Nylon (Onyx) was used as the composite base material, while carbon constituted the reinforcement element. The carbon fiber embedment was varied in selected components taking values of 0°, 45°, 90°, and 135° for parts undergoing tensile testing, while one specific part type was produced combining all angles. Carbon-fiber-free components with 100% and 37% fillings were also produced for comparison purposes. Parts undergoing the Charpy impact test had the fibers deposited at angles of 0° and 90°, while one part type was also produced combining the four angles mentioned before. Carbon-fiber-free parts with 100% and 37% fillings were also produced for comparison purposes as with the first part. The Markforged MARK TWO 3D printer was used for printing the parts. These were subsequently scanned in the METROTOM 1500 computed tomography and submitted to the tensile and impact tests. The results showed that adding carbon fiber to the base material increased the volume of defects in the samples as a result of the porosity increase. Although the tensile testing manifested an overall increase in tensile strength Rm of up to 12 times compared to the sample without reinforcement, it was proven that an improper fiber orientation significantly diminished the strength and that combining the four selected angles did not lead to the highest strength values. Finally, the impact tests also showed that fiber-reinforced parts implied up to 2.7 times more work to fracture, and that an improved fiber orientation also led to strength reduction.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9962958 | PMC |
http://dx.doi.org/10.3390/ma16041459 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!