A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@remsenmedia.com&api_key=81853a771c3a3a2c6b2553a65bc33b056f08&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Effect of Heat Treatment on Creep Deformation and Fracture Properties for a Coarse-Grained Inconel 718 Manufactured by Directed Energy Deposition. | LitMetric

The creep properties of a laser-directed energy deposition (L-DED) technique manufactured Inconel 718 (IN718) was investigated at 650 °C/700 MPa. Microstructure and creep properties of L-DED IN718 samples were tailored by various post heat treatments involving homogenization heat treatment with temperature ranging from 1080 to 1180 °C + double aging and hot isostatic pressing (HIP). Microstructural changes and their influence on the creep behavior and fracture mechanism were observed and discussed. The results show that L-DED sample heat treated by a simple double aging exhibits a 49% increase in creep lifetime t and a comparable creep elongation ɛ when compared to the wrought material, due to the reserved coarse dislocation cell substructure from the L-DED process. The loss of dislocation cell structure and the coarsening of grains at higher temperature of heat treatments contributes to a shorter t ε, but faster ε̇ (minimum creep rate). The present work demonstrates that a simultaneous improvement of creep strength and creep elongation can be achieved in the case of a coarse-grained L-DED IN718 by a double aging treatment which can preserve both the strengthening precipitates and an appropriate size of dislocation cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9959023PMC
http://dx.doi.org/10.3390/ma16041377DOI Listing

Publication Analysis

Top Keywords

double aging
12
creep
9
heat treatment
8
inconel 718
8
energy deposition
8
creep properties
8
l-ded in718
8
heat treatments
8
creep elongation
8
dislocation cell
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!