Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Laboratory rats have excellent learning abilities and are often used in cognitive neuroscience research. The majority of rat studies are conducted on males, whereas females are usually overlooked. Here, we examined sex differences in behavior and tactile sensitivity in littermates during adulthood (5.8-7.6 months of age). We used a battery of behavioral tests, including the 2% sucrose preference test (positive motivation), a free-choice paradigm (T-maze, neutral situation), and associative fear-avoidance learning (negative motivation, aversive situation). Tactile perception was examined using the von Frey test (aversive situation). In two aversive situations (von Frey test and avoidance learning), females were examined during the diestrus stage of the estrous cycle, and ultrasonic vocalization was recorded in both sexes. It was found that (1) females, but not males, lost their body weight on the first day of the sucrose preference test, suggesting sex differences in their reaction to environmental novelty or in metabolic homeostasis; (2) the tactile threshold in females was lower than in males, and females less frequently emitted aversive ultrasonic calls; (3) in the avoidance learning task, around 26% of males (but no females) were not able to learn and experienced frizzing. Overall, the performance of associative fear-avoidance in males was worse than in females. In general, females demonstrated higher abilities of associative learning and less persistently emitted aversive ultrasonic calls.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9966297 | PMC |
http://dx.doi.org/10.3390/life13020547 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!