Some of the icy moons of the solar system with a subsurface ocean, such as Europa and Enceladus, are the targets of future space missions that search for potential extraterrestrial life forms. While the ice shells that envelop these moons have been studied by several spacecrafts, the oceans beneath them remain unreachable. To better constrain the habitability conditions of these moons, we must understand the interactions between their frozen crusts, liquid layers, and silicate mantles. To that end, astrobiologists rely on planetary field analogues, for which the polar regions of Earth have proven to be great candidates. This review shows how spectroscopy is a powerful tool in space missions to detect potential biosignatures, in particular on the aforementioned moons, and how the polar regions of the Earth are being used as planetary field analogues for these extra-terrestrial environments.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9960113PMC
http://dx.doi.org/10.3390/life13020478DOI Listing

Publication Analysis

Top Keywords

icy moons
8
space missions
8
planetary field
8
field analogues
8
polar regions
8
regions earth
8
moons
5
spectroscopic detection
4
detection biosignatures
4
biosignatures natural
4

Similar Publications

Tidal Deformation and Dissipation Processes in Icy Worlds.

Space Sci Rev

January 2025

Faculty of Mathematics and Physics, Department of Geophysics, Charles University, V Holesšovičkách 2, Praha, Praha 8 180 00 Czech Republic.

Tidal interactions play a key role in the dynamics and evolution of icy worlds. The intense tectonic activity of Europa and the eruption activity on Enceladus are clear examples of the manifestation of tidal deformation and associated dissipation. While tidal heating has long been recognized as a major driver in the activity of these icy worlds, the mechanism controlling how tidal forces deform the different internal layers and produce heat by tidal friction still remains poorly constrained.

View Article and Find Full Text PDF

Saturn's rings have been estimated to be as young as about 100 to 400 million years old according to the hypothesis that non-icy micrometeoroid bombardment acts to darken the rings over time and the Cassini observation indicated that the ring particles appear to be relatively clean. These young age estimates assume that the rings formed out of pure water ice particles with a high accretion efficiency of impacting non-icy micrometeoroid material ( ≳ 10%). Here we show, using numerical simulations of hypervelocity micrometeoroid impacts on a ring particle, that non-icy material may not be as readily accreted as previously thought.

View Article and Find Full Text PDF

Growth of Clathrate Hydrates in Nanoscale Ice Films Observed Using Electron Diffraction and Infrared Spectroscopy.

J Phys Chem Lett

January 2025

DST Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence (TUE), Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India.

Clathrate hydrates (CHs) are believed to exist in cold regions of space, such as comets and icy moons. While spectroscopic studies have explored their formation under similar laboratory conditions, direct structural characterization using diffraction techniques has remained elusive. We present the first electron diffraction study of tetrahydrofuran (THF) and 1,3-dioxolane (DIOX) CHs in the form of nanometer-thin ice films under an ultrahigh vacuum at cryogenic temperatures.

View Article and Find Full Text PDF

Metastable Dihydrate of Sodium Chloride at Ambient Pressure.

J Phys Chem Lett

December 2024

AstrobiologyOU, School of Environment, Earth and Ecosystem Sciences, Open University, Walton Hall, Milton Keynes MK7 6AA, United Kingdom.

Article Synopsis
  • Sodium chloride (NaCl) is significant across various fields, including geochemistry and food production, and is one of the most prevalent salts in the cosmos.
  • Researchers discovered a new form of NaCl, a metastable dihydrate, created by rapidly freezing a NaCl solution, which transforms into hydrohalite and ice Ih when heated above 190 K.
  • This finding suggests that the presence of this new hydrate on icy celestial bodies, like Jupiter and Saturn's moons, could indicate areas where subsurface brines have recently frozen, highlighting potential targets for future space missions.
View Article and Find Full Text PDF
Article Synopsis
  • The MAJIS instrument on the JUICE spacecraft will study the surfaces and atmospheres of the Jupiter system by analyzing visible and infrared light.
  • A calibration campaign was conducted before launch to gather necessary measurements for evaluating the instrument's performance, including signal-to-noise ratio and straylight effects.
  • The paper details the setup and methods used for calibration and discusses the radiometric, geometric, and spectral properties measured, as well as challenges faced during the campaign.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!