Brain MR images are the most suitable method for detecting chronic nerve diseases such as brain tumors, strokes, dementia, and multiple sclerosis. They are also used as the most sensitive method in evaluating diseases of the pituitary gland, brain vessels, eye, and inner ear organs. Many medical image analysis methods based on deep learning techniques have been proposed for health monitoring and diagnosis from brain MRI images. CNNs (Convolutional Neural Networks) are a sub-branch of deep learning and are often used to analyze visual information. Common uses include image and video recognition, suggestive systems, image classification, medical image analysis, and natural language processing. In this study, a new modular deep learning model was created to retain the existing advantages of known transfer learning methods (DenseNet, VGG16, and basic CNN architectures) in the classification process of MR images and eliminate their disadvantages. Open-source brain tumor images taken from the Kaggle database were used. For the training of the model, two types of splitting were utilized. First, 80% of the MRI image dataset was used in the training phase and 20% in the testing phase. Secondly, 10-fold cross-validation was used. When the proposed deep learning model and other known transfer learning methods were tested on the same MRI dataset, an improvement in classification performance was obtained, but an increase in processing time was observed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9964555PMC
http://dx.doi.org/10.3390/life13020349DOI Listing

Publication Analysis

Top Keywords

deep learning
16
brain tumor
8
brain mri
8
mri images
8
medical image
8
image analysis
8
learning model
8
transfer learning
8
learning methods
8
brain
6

Similar Publications

Single-cell RNA sequencing (scRNA-seq) offers remarkable insights into cellular development and differentiation by capturing the gene expression profiles of individual cells. The role of dimensionality reduction and visualization in the interpretation of scRNA-seq data has gained widely acceptance. However, current methods face several challenges, including incomplete structure-preserving strategies and high distortion in embeddings, which fail to effectively model complex cell trajectories with multiple branches.

View Article and Find Full Text PDF

Deep learning-based design and experimental validation of a medicine-like human antibody library.

Brief Bioinform

November 2024

Biotherapeutics Molecule Discovery, Boehringer Ingelheim Pharmaceutical Inc., 900 Ridgebury Road, Ridgefield, CT 06877, United States.

Antibody generation requires the use of one or more time-consuming methods, namely animal immunization, and in vitro display technologies. However, the recent availability of large amounts of antibody sequence and structural data in the public domain along with the advent of generative deep learning algorithms raises the possibility of computationally generating novel antibody sequences with desirable developability attributes. Here, we describe a deep learning model for computationally generating libraries of highly human antibody variable regions whose intrinsic physicochemical properties resemble those of the variable regions of the marketed antibody-based biotherapeutics (medicine-likeness).

View Article and Find Full Text PDF

With the rising demand of saffron, it is essential to standardize the confirmation of its origin and identify any adulteration to maintain a good quality led market product. However, a rapid and reliable strategy for identifying the adulteration saffron is still lacks. Herein, a combination of headspace-gas chromatography-ion mobility spectrometry (HS-GC-IMS) and convolutional neural network (CNN) was developed.

View Article and Find Full Text PDF

Detecting anomalies in smart wearables for hypertension: a deep learning mechanism.

Front Public Health

January 2025

Department of Computer Science, College of Engineering and Computer Science, Jazan University, Jazan, Saudi Arabia.

Introduction: The growing demand for real-time, affordable, and accessible healthcare has underscored the need for advanced technologies that can provide timely health monitoring. One such area is predicting arterial blood pressure (BP) using non-invasive methods, which is crucial for managing cardiovascular diseases. This research aims to address the limitations of current healthcare systems, particularly in remote areas, by leveraging deep learning techniques in Smart Health Monitoring (SHM).

View Article and Find Full Text PDF

Dynamic-budget superpixel active learning for semantic segmentation.

Front Artif Intell

January 2025

Department of Computer Science, University of Saskatchewan, Saskatoon, SK, Canada.

Introduction: Active learning can significantly decrease the labeling cost of deep learning workflows by prioritizing the limited labeling budget to high-impact data points that have the highest positive impact on model accuracy. Active learning is especially useful for semantic segmentation tasks where we can selectively label only a few high-impact regions within these high-impact images. Most established regional active learning algorithms deploy a static-budget querying strategy where a fixed percentage of regions are queried in each image.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!