After detection, identifying which intracranial aneurysms (IAs) will rupture is imperative. We hypothesized that RNA expression in circulating blood reflects IA growth rate as a surrogate of instability and rupture risk. To this end, we performed RNA sequencing on 66 blood samples from IA patients, for which we also calculated the predicted aneurysm trajectory (PAT), a metric quantifying an IA's future growth rate. We dichotomized dataset using the median PAT score into IAs that were either more stable and more likely to grow quickly. The dataset was then randomly divided into training ( = 46) and testing cohorts ( = 20). In training, differentially expressed protein-coding genes were identified as those with expression (TPM > 0.5) in at least 50% of the samples, a -value < 0.05 (based on modified F-statistics with Benjamini-Hochberg correction), and an absolute fold-change ≥ 1.5. Ingenuity Pathway Analysis was used to construct networks of gene associations and to perform ontology term enrichment analysis. The MATLAB Classification Learner was then employed to assess modeling capability of the differentially expressed genes, using a 5-fold cross validation in training. Finally, the model was applied to the withheld, independent testing cohort ( = 20) to assess its predictive ability. In all, we examined transcriptomes of 66 IA patients, of which 33 IAs were "growing" (PAT ≥ 4.6) and 33 were more "stable". After dividing dataset into training and testing, we identified 39 genes in training as differentially expressed (11 with decreased expression in "growing" and 28 with increased expression). Model genes largely reflected organismal injury and abnormalities and cell to cell signaling and interaction. Preliminary modeling using a subspace discriminant ensemble model achieved a training AUC of 0.85 and a testing AUC of 0.86. In conclusion, transcriptomic expression in circulating blood indeed can distinguish "growing" and "stable" IA cases. The predictive model constructed from these differentially expressed genes could be used to assess IA stability and rupture potential.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9967913PMC
http://dx.doi.org/10.3390/jpm13020266DOI Listing

Publication Analysis

Top Keywords

differentially expressed
16
circulating blood
12
rna expression
8
expression circulating
8
growth rate
8
training testing
8
training differentially
8
expressed genes
8
training
6
expression
5

Similar Publications

Background: Gastric cancer (GC) ranks as the fourth leading cause of cancer-related deaths worldwide, with most patients diagnosed at advanced stages due to the absence of reliable early detection biomarkers.

Methods: RNA-sequencing was conducted to identify the differentially expressed genes between GC tissues and adjacent normal tissues. CCK8, EdU, colony formation, transwell, flow cytometry and xenograft assays were adopted to explore the biological function of ZBTB10 and betulinic acid (BA) in GC progression.

View Article and Find Full Text PDF

Background: Litter size in mice is an important fitness and economic feature that is controlled by several genes and influenced by non-genetic factors too. High positive selection pressure in each generation for Litter size at birth (LSB), resulted in the development of high and low prolific lines of inbred Swiss albino mice (SAM). Despite uniform management conditions, these lines showed variability in LSB across the generation.

View Article and Find Full Text PDF

Purpose: To investigate the effect of Ca2+/calmodulin-dependent protein kinase II (CAMKII) δ subtypes (CAMK2D) on sodium iodate (NaIO3)-induced retinal degeneration in mice.

Methods: Bioinformatics analysis and Western blot experiments were used to screen the significantly differentially expressed genes in age-related macular degeneration (AMD) disease. CAMK2D knockdown and overexpression models were constructed by lentivirus (LV) infection of adult retinal pigment epithelial cell line-19 (ARPE-19) cells in vitro.

View Article and Find Full Text PDF

Relationship between the and the gene copy number variation and growth traits in different cattle breeds.

Anim Biotechnol

December 2025

Jilin Academy of Agricultural Sciences, Changchun, Jilin Province, China.

Copy number variations (CNV) are important genetic variations. The endogenous factors cobalamin receptor () and MIA SH3 domain ER-derived factor 3 () are associated with bone/muscle development and intramuscular fat deposition. There have been no reports on the effects of and CNVs on growth traits of Chinese cattle.

View Article and Find Full Text PDF

Background/purpose: Bone reconstruction in the maxillofacial region typically relies on autologous bone grafting, which presents challenges, including donor site complications and graft limitations. Recent advances in tissue engineering have identified highly pure and proliferative dedifferentiated fat cells (DFATs) as promising alternatives. Herein, we explored the capacity for osteoblast differentiation and the osteoinductive characteristics of extracellular vesicles derived from DFATs (DFAT-EVs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!