Isavuconazole is a triazole antifungal agent recently recommended as first-line therapy for invasive pulmonary aspergillosis. With the COVID-19 pandemic, cases of COVID-19-associated pulmonary aspergillosis (CAPA) have been described with a prevalence ranging from 5 to 30%. We developed and validated a population pharmacokinetic (PKpop) model of isavuconazole plasma concentrations in intensive care unit patients with CAPA. Nonlinear mixed-effect modeling Monolix software were used for PK analysis of 65 plasma trough concentrations from 18 patients. PK parameters were best estimated with a one-compartment model. The mean of ISA plasma concentrations was 1.87 [1.29-2.25] mg/L despite prolonged loading dose (72 h for one-third) and a mean maintenance dose of 300 mg per day. Pharmacokinetics (PK) modeling showed that renal replacement therapy (RRT) was significantly associated with under exposure, explaining a part of clearance variability. The Monte Carlo simulations suggested that the recommended dosing regimen did not achieve the trough target of 2 mg/L in a timely manner (72 h). This is the first isavuconazole PKpop model developed for CAPA critical care patients underlying the need of therapeutic drug monitoring, especially for patients under RRT.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9960864PMC
http://dx.doi.org/10.3390/jof9020211DOI Listing

Publication Analysis

Top Keywords

pulmonary aspergillosis
12
critical care
8
care patients
8
covid-19-associated pulmonary
8
monte carlo
8
carlo simulations
8
pkpop model
8
plasma concentrations
8
patients
5
population pharmacokinetics
4

Similar Publications

Introduction: Invasive fungal disease (IFD) is a morbid superinfection that can arise in critically ill patients with COVID-19 infection. Studies evaluating the full spectrum of COVID-19-associated fungal infections remain limited.

Methods: Single-center retrospective study assessing IFD in patients with COVID-19, hospitalized for ≥ 72 h in the intensive care unit (ICU) between 02/25/20 and 02/28/22 (n = 1410).

View Article and Find Full Text PDF

Chronic granulomatous disease is the inborn error of immunity with the highest frequency of invasive aspergillosis. In this context, invasive aspergillosis is frequent in adolescence, with rare cases before one year of age. We present a case of chronic granulomatous disease and invasive aspergillosis in a four-month-old infant.

View Article and Find Full Text PDF

An accurate diagnosis of invasive aspergillosis (IA) in patients with underlying hematological malignancies relies heavily on galactomannan detection. In this study, we compared the VirCLIA chemiluminescence immunoassay (CLIA) with the frequently used Platelia enzyme-linked immunosorbent assay (ELISA) on serum from hematology patients with suspected IA. Patients were categorized according to EORTC/MSGERC 2020 definitions into proven/probable IA and possible/no IA.

View Article and Find Full Text PDF

We review the case of a 58-year-old female on extracorporeal membrane oxygenation (ECMO) support diagnosed with invasive pulmonary aspergillosis (IPA). Intravenous isavuconazole was started, requiring dose escalation to achieve isavuconazole trough concentration (ISA-Cmin) within the therapeutic range (2.5-5.

View Article and Find Full Text PDF

Background And Objective: Multiplex polymerase chain reaction (PCR)-based targeted next-generation sequencing (tNGS) is a promising tool for distinguishing lower respiratory tract infections (LRTIs) in clinical practice, and its detectable pathogen spectrum can cover more than 95% of clinical cases. but there is limited information on systematic evaluation of the clinical use of multiplex PCR-based tNGS (mp-tNGS) in IPA cases. We aim to assess mp-tNGS in bronchoalveolar lavage fluid (BALF) for Aspergillus detection in suspected IPA patients, and to provide a reliable basis for initiating antifungal therapy without microbiological or histopathological evidence.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!