Breast cancer is the most common type of cancer in women, and early detection is important to significantly reduce its mortality rate. This study introduces a detection and diagnosis system that automatically detects and classifies breast tumors in CT scan images. First, the contours of the chest wall are extracted from computed chest tomography images, and two-dimensional image characteristics and three-dimensional image features, together with the application of active contours without edge and geodesic active contours methods, are used to detect, locate, and circle the tumor. Then, the computer-assisted diagnostic system extracts features, quantifying and classifying benign and malignant breast tumors using a greedy algorithm and a support vector machine. The study used 174 breast tumors for experiment and training and performed cross-validation 10 times (k-fold cross-validation) to evaluate performance of the system. The accuracy, sensitivity, specificity, and positive and negative predictive values of the system were 99.43%, 98.82%, 100%, 100%, and 98.89% respectively. This system supports the rapid extraction and classification of breast tumors as either benign or malignant, helping physicians to improve clinical diagnosis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9960342PMC
http://dx.doi.org/10.3390/jcm12041582DOI Listing

Publication Analysis

Top Keywords

breast tumors
20
benign malignant
12
malignant breast
8
active contours
8
breast
6
tumors
5
system
5
complete fully
4
fully automatic
4
automatic detection
4

Similar Publications

Background: Thyroid Hormones (THs) critically impact human cancer. Although endowed with both tumor-promoting and inhibiting effects in different cancer types, excess of THs has been linked to enhanced tumor growth and progression. Breast cancer depends on the interaction between bulk tumor cells and the surrounding microenvironment in which mesenchymal stem cells (MSCs) exert powerful pro-tumorigenic activities.

View Article and Find Full Text PDF

The Role of NF-κB/MIR155HG in Regulating the Stemness and Radioresistance in Breast Cancer Stem Cells.

Front Biosci (Landmark Ed)

January 2025

Department of Chemoradiotherapy, Ningbo No 2 Hospital, 315000 Ningbo, Zhejiang, China.

Background: Breast cancer stem cells (BCSCs) are instrumental in treatment resistance, recurrence, and metastasis. The development of breast cancer and radiation sensitivity is intimately pertinent to long non-coding RNA (lncRNA). This work is formulated to investigate how the lncRNA affects the stemness and radioresistance of BCSCs.

View Article and Find Full Text PDF

Update on the Progress of Musashi-2 in Malignant Tumors.

Front Biosci (Landmark Ed)

January 2025

Department of Hepatobiliary and Pancreatic Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, 030032 Taiyuan, Shanxi, China.

Since the discovery of the Musashi (MSI) protein, its ability to affect the mitosis of Drosophila progenitor cells has garnered significant interest among scientists. In the following 20 years, it has lived up to expectations. A substantial body of evidence has demonstrated that it is closely related to the development, metastasis, migration, and drug resistance of malignant tumors.

View Article and Find Full Text PDF

Curcumin, a bioactive compound derived from the rhizome of L., has garnered significant attention for its potent anticancer properties. Despite its promising therapeutic potential, its poor bioavailability, rapid metabolism, and low water solubility hinder curcumin's clinical application.

View Article and Find Full Text PDF

Tea is a significant source of flavonoids in the diet. Due to different production processes, the amount of bioactive compounds in unfermented (green) and (semi-)fermented tea differs. Importantly, green tea has a similar composition of phenolic compounds to fresh, unprocessed tea leaves.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!