sp.1 males are sexually stimulated by the aroma of fruit of its native host (guava). Other hosts, which are exotic to , do not enhance male sexual behavior. Here we evaluate the effects of fruit volatile exposure on male sp. 1 sexual performance using other native hosts, under the hypothesis that male improvement derives from a common evolutionary history between sp. 1 and its native hosts. Four species were evaluated: , , , and . Guava was used as a positive control. Males were exposed to fruit from 12:00 pm to 4:00 pm, from day 8 to day 11 post-emergence. On day 12, we evaluated their calling behavior and mating success. Both guava and enhanced calling behavior. Mating success was enhanced only by guava and a trend was found for . Interestingly, the two hosts belong to the Psidium genus. A volatile analysis is planned to identify the compounds responsible for this phenomenon. The other native fruits did not improve the sexual behavior of males. Implications of our findings in the management of sp. 1 are discussed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9964522PMC
http://dx.doi.org/10.3390/insects14020188DOI Listing

Publication Analysis

Top Keywords

native host
8
sexual performance
8
male sexual
8
sexual behavior
8
native hosts
8
calling behavior
8
behavior mating
8
mating success
8
native
5
fruit
4

Similar Publications

Studying the molecular basis of intestinal infections caused by enteric pathogens at the tissue level is challenging, because most human intestinal infection models have limitations, and results obtained from animals may not reflect the human situation. Infections with Salmonella enterica serovar Typhimurium (STm) have different outcomes between organisms. 3D tissue modeling of primary human material provides alternatives to animal experimentation, but epithelial co-culture with immune cells remains difficult.

View Article and Find Full Text PDF

Recent studies have unveiled the deep sea as a rich biosphere, populated by species descended from shallow-water ancestors post-mass extinctions. Research on genomic evolution and microbial symbiosis has shed light on how these species thrive in extreme deep-sea conditions. However, early adaptation stages, particularly the roles of conserved genes and symbiotic microbes, remain inadequately understood.

View Article and Find Full Text PDF

Integrating Enzymes with Reticular Frameworks To Govern Biocatalysis.

Angew Chem Int Ed Engl

January 2025

Sun Yat-Sen University, School of Chemistry, 135 Xingang West, 510275, Guangzhou, CHINA.

Integrating enzymes with reticular frameworks offers promising avenues for access to functionally tailorable biocatalysis. This Minireview explores recent advances in enzyme-reticular frameworks hybrid biocomposites, focusing on the utilization of porous reticular frameworks, including metal-organic frameworks, covalent-organic frameworks, and hydrogen-bonded organic frameworks, to regulate the reactivity of an enzyme encapsulated inside mainly by pore infiltration and in situ encapsulation strategies. We highlight how pore engineering and host-guest interfacial interactions within reticular frameworks create tailored microenvironments that substantially impact the mass transfer and enzyme's conformation, leading to biocatalytic rate enhancement, or imparting enzyme with non-native biocatalytic functions including substrate-selectivity and new activity.

View Article and Find Full Text PDF

Parasitic plants are a diverse and unique polyphyletic assemblage of flowering plants that survive by obtaining resources via direct vascular connections to a host plant. Ecologically important in their native ecosystems, these typically cryptic plants remain understudied and fundamental knowledge of the biology, ecology, and evolution of most species is lacking. This gap limits our understanding of ecosystems and conservation management.

View Article and Find Full Text PDF

Engineered Bacteria for Disease Diagnosis and Treatment Using Synthetic Biology.

Microb Biotechnol

January 2025

Department of Environmental and Chemical Engineering, Shanghai University, Shanghai, China.

Using synthetic biology techniques, bacteria have been engineered to serve as microrobots for diagnosing diseases and delivering treatments. These engineered bacteria can be used individually or in combination as microbial consortia. The components within these consortia complement each other, enhancing diagnostic accuracy and providing synergistic effects that improve treatment efficacy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!