The human gene encodes an AT-hook transcription factor, the expression of which is involved in various cellular processes. The goal of this study was to identify potential AKNA binding sites in genes that participate in T-cell activation and validate selected genes. Here we analyzed ChIP-seq and microarray assays to determine AKNA-binding motifs and the cellular process altered by AKNA in T-cell lymphocytes. In addition, we performed a validation analysis by RT-qPCR to assess AKNA's role in promoting and expression. We found five AT-rich motifs that are potential candidates as AKNA response elements. We identified these AT-rich motifs in promoter regions of more than a thousand genes in activated T-cells, and demonstrated that AKNA induces the expression of genes involved in helper T-cell activation, such as . The genomic enrichment and prediction of AT-rich motif analyses demonstrated that AKNA is a transcription factor that can potentially modulate gene expression by recognizing AT-rich motifs in a plethora of genes that are involved in different molecular pathways and processes. Among the cellular processes activated by AT-rich genes, we found inflammatory pathways potentially regulated by AKNA, suggesting AKNA is acting as a master regulator during T-cell activation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9965657PMC
http://dx.doi.org/10.3390/ijms24044212DOI Listing

Publication Analysis

Top Keywords

t-cell activation
16
transcription factor
12
at-rich motifs
12
akna
8
akna t-cell
8
cellular processes
8
demonstrated akna
8
genes involved
8
genes
6
t-cell
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!