Soybean-seed development is controlled in multiple ways, as in many known regulating genes. Here, we identify a novel gene, (), involved in seed development, by analyzing a T-DNA mutant (). The mutant is a random mutant of the transgenic line, with phenotypes with small and brown seed coats. An analysis of the metabolomics and transcriptome combined with RT-qPCR in the seeds revealed that the brown coat may result from the increased expression of genes, while the down-regulated expression of leads to small seed size. The seed phenotypes and a microscopic observation of the seed-coat integument cells in a CRISPR/Cas9-edited mutant confirmed that the gene conferred small phenotypes of the seeds. As mentioned in an annotation on the Phytozome website, encodes a potential DNA helicase RuvA subunit, and no such genes were previously reported to be involved in seed development. Therefore, we identify a novel gene in a new pathway controlling seed development in soybeans.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9967547 | PMC |
http://dx.doi.org/10.3390/ijms24044189 | DOI Listing |
BMC Plant Biol
December 2024
Center of Excellence in Genomics & Systems Biology (CEGSB) and Centre for Pre-breeding Research (CPBR), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, 502324, India.
Pre-harvest sprouting (PHS) in groundnut leads to substantial yield losses and reduced seed quality, resulting in reduced market value of groundnuts. Breeding cultivars with 14-21 days of fresh seed dormancy (FSD) holds promise for precisely mitigating the yield and quality deterioration. In view of this, six multi-locus genome-wide association study (ML-GWAS) models alongside a single-locus GWAS (SL-GWAS) model were employed on a groundnut mini-core collection using multi season phenotyping and 58 K "Axiom_Arachis" array genotyping data.
View Article and Find Full Text PDFBMC Plant Biol
December 2024
Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China.
Background: Laccases (LACs) are vital plant growth and development enzymes, participating in lignin biopolymerization and responding to stress. However, the role of LAC genes in plant development as well as stress tolerance, is still not well understood, particularly in sesame (Sesamum indicum L.), an important oilseed crop.
View Article and Find Full Text PDFMar Biotechnol (NY)
December 2024
MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.
Triploids are widely used to rapidly achieve genetic improvements of organisms due to their fast growth and enhanced environmental adaptability. Artificially induced triploids are generally considered to be infertile owing to the obvious inhibition of gonadal development. Recently, some fertile individuals with reduced advantages have been found in triploid bivalves, which is a notable deviation from the original intention of artificially inducing triploids.
View Article and Find Full Text PDFEur J Nucl Med Mol Imaging
December 2024
Department of Nuclear Medicine, Peking University First Hospital, No. 8 Xishiku Str., Xicheng Dist, Beijing, 100034, China.
Purpose: CD38 is a glycoprotein highly specific to multiple myeloma (MM). Therapeutics using antibodies targeting CD38 have shown promising efficacy. However, the efficient stratification of patients who may benefit from daratumumab (Dara) therapy and timely monitoring of therapeutic responses remain significant clinical challenges.
View Article and Find Full Text PDFMol Plant Pathol
December 2024
State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, China.
Cytokinin signalling plays both positive and negative roles in plant resistance to pathogens. It is not clear whether the role of cytokinin changes at the different stages of pathogen infection. Arabidopsis thaliana sequentially exhibits distinct root morphological symptoms during Ralstonia solanacearum infection, which offers a good system to investigate function of cytokinin in the whole pathogen infection process.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!