Mechanistic Insights into the Biological Effects of Engineered Nanomaterials: A Focus on Gold Nanoparticles.

Int J Mol Sci

Department of Biological Sciences, College of Sciences and Mathematics, Auburn University, Auburn, AL 36849, USA.

Published: February 2023

Nanotechnology has great potential to significantly advance the biomedical field for the benefit of human health. However, the limited understanding of nano-bio interactions leading to unknowns about the potential adverse health effects of engineered nanomaterials and to the poor efficacy of nanomedicines has hindered their use and commercialization. This is well evidenced considering gold nanoparticles, one of the most promising nanomaterials for biomedical applications. Thus, a fundamental understanding of nano-bio interactions is of interest to nanotoxicology and nanomedicine, enabling the development of safe-by-design nanomaterials and improving the efficacy of nanomedicines. In this review, we introduce the advanced approaches currently applied in nano-bio interaction studies-omics and systems toxicology-to provide insights into the biological effects of nanomaterials at the molecular level. We highlight the use of omics and systems toxicology studies focusing on the assessment of the mechanisms underlying the in vitro biological responses to gold nanoparticles. First, the great potential of gold-based nanoplatforms to improve healthcare along with the main challenges for their clinical translation are presented. We then discuss the current limitations in the translation of omics data to support risk assessment of engineered nanomaterials.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9963226PMC
http://dx.doi.org/10.3390/ijms24044109DOI Listing

Publication Analysis

Top Keywords

engineered nanomaterials
12
gold nanoparticles
12
insights biological
8
biological effects
8
effects engineered
8
great potential
8
understanding nano-bio
8
nano-bio interactions
8
efficacy nanomedicines
8
nanomaterials
6

Similar Publications

Synchronous Interference of Dual Metabolic Pathways Mediated by HS Gas/GOx for Augmenting Tumor Microwave Thermal Therapy.

ACS Appl Mater Interfaces

January 2025

Key Laboratory of Cryogenics Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.

Sublethal tumor cells have an urgent need for energy, making it common for them to switch metabolic phenotypes between glycolysis and oxidative phosphorylation (OXPHOS) for compensatory energy supply; thus, the synchronous interference of dual metabolic pathways for limiting energy level is essential in inhibiting sublethal tumor growth. Herein, a multifunctional nanoplatform of Co-MOF-loaded anethole trithione (ADT) and myristyl alcohol (MA), modified with GOx and hyaluronic acid (HA) was developed, namely, CAMGH. It could synchronously interfere with dual metabolic pathways including glycolysis and OXPHOS to restrict the adenosine triphosphate (ATP) supply, achieving the inhibition to sublethal tumors after microwave (MW) thermal therapy.

View Article and Find Full Text PDF

Manipulating the optical landscape of single quantum dots (QDs) is essential to increase the emitted photon output, enhancing their performance as chemical sensors and single-photon sources. Micro-optical structures are typically used for this task, with the drawback of a large size compared to the embedded single emitters. Nanophotonic architectures hold the promise to modify dramatically the emission properties of QDs, boosting light-matter interactions at the nanoscale, in ultracompact devices.

View Article and Find Full Text PDF

Co-assemblies of Silver Nanoclusters and Fullerenols With Enhanced Third-Order Nonlinear Optical Response.

Small Methods

January 2025

National Engineering Research Center for Colloidal Materials, Key Laboratory of Colloid and Interface Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China.

Exploring potential third-order nonlinear optical (NLO) materials attracts ever-increasing attention. Given that the atomically precise and rich adjustable structural features of silver nanoclusters (Ag NCs), as well as the unique π-electron conjugated system of carbon-based nanomaterials, a supramolecular co-assembly amplification strategy to enhance the luminescent intensity and NLO performance of the hybrids of the two components, are constructed and the relationship between structures and optical properties are investigated. By combining water soluble Ag NCs [(NH)[Ag(mna)] (Hmna = 2-mercaptonicotinic acid, abbreviated to Ag─NCs hereafter) containing uncoordinated carboxyl groups with water-soluble fullerene derivatives modified with multiple hydroxyl groups (fullerenols, C─OH), the π-electron delocalization is expanded owing to non-covalent hydrogen bonding effect between Ag6─NCs and C─OH, which provides a feasible basis for realizing the NLO response.

View Article and Find Full Text PDF

An FPGA-Based SiNW-FET Biosensing System for Real-Time Viral Detection: Hardware Amplification and 1D CNN for Adaptive Noise Reduction.

Sensors (Basel)

January 2025

Department of Computer Science, Faculty of Sciences and Humanities Sciences, Majmaah University, Al Majmaah 11952, Saudi Arabia.

Impedance-based biosensing has emerged as a critical technology for high-sensitivity biomolecular detection, yet traditional approaches often rely on bulky, costly impedance analyzers, limiting their portability and usability in point-of-care applications. Addressing these limitations, this paper proposes an advanced biosensing system integrating a Silicon Nanowire Field-Effect Transistor (SiNW-FET) biosensor with a high-gain amplification circuit and a 1D Convolutional Neural Network (CNN) implemented on FPGA hardware. This attempt combines SiNW-FET biosensing technology with FPGA-implemented deep learning noise reduction, creating a compact system capable of real-time viral detection with minimal computational latency.

View Article and Find Full Text PDF

Preparation of Molecularly Imprinted Electrochemical Sensors and Analysis of the Doping of Epinephrine in Equine Blood.

Sensors (Basel)

December 2024

Shandong Provincial Key Laboratory of Monocrystalline Silicon Semiconductor Materials and Technology, Shandong Provincial Engineering Research Center of Organic Functional Materials and Green Low-Carbon Technology, Shandong Universities Engineering Research Center of Integrated Circuits Functional Materials and Expanded Applications, College of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, China.

In this paper, a novel molecularly imprinted polymer membrane modified glassy carbon electrode for electrochemical sensors (MIP-OH-MWCNTs-GCE) for epinephrine (EP) was successfully prepared by a gel-sol method using an optimized functional monomer oligosilsesquioxane-AlO sol-ITO composite sol (ITO-POSS-AlO). Hydroxylated multi-walled carbon nanotubes (OH-MWCNTs) were introduced during the modification of the electrodes, and the electrochemical behavior of EP on the molecularly imprinted electrochemical sensors was probed by the differential pulse velocity (DPV) method. The experimental conditions were optimized.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!