Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The survival of free fat grafts is dependent primarily on adipose-derived stem cells (ADSCs); however, ADSCs are susceptible to oxidative stress in the recipient area. Astaxanthin (Axt) is a natural xanthophyll carotenoid with potent antioxidant properties and numerous clinical applications. To date, the therapeutic potential of Axt in fat grafting has not been explored. The purpose of this study is to investigate the effects of Axt on oxidatively stressed ADSCs. An oxidative model of ADSCs was developed to simulate the host's microenvironment. Oxidative insult decreased the protein levels of Cyclin D1, type I collagen alpha 1 (COL1A1), and type II collagen alpha 1 (COL2A1), while increasing the expression of cleaved Caspase 3 and secretion of interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α) in ADSCs. Axt pre-treatment significantly reduced oxidative stress, increased the synthesis of an adipose extracellular matrix, alleviated inflammation, and restored the impaired adipogenic potential in the present model. Furthermore, Axt immensely activated the NF-E2-related factor 2 (Nrf2) pathway, and ML385, an inhibitor of Nrf2, could negate Axt's protective effects. Additionally, Axt alleviated apoptosis by inhibiting bcl-2-associated X protein (BAX)/Caspase 3 signaling and improving the mitochondrial membrane potential (MMP), which could also be abolished by ML385. Our results suggest that Axt may exert its cytoprotective effect on ADSCs through the Nrf2 signaling pathway and could be therapeutic in fat grafting.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9959672 | PMC |
http://dx.doi.org/10.3390/ijms24043850 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!