Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Biocompatible polyesters are widely used in biomedical applications, including sutures, orthopedic devices, drug delivery systems, and tissue engineering scaffolds. Blending polyesters with proteins is a common method of tuning biomaterial properties. Usually, it improves hydrophilicity, enhances cell adhesion, and accelerates biodegradation. However, inclusion of proteins to a polyester-based material typically reduces its mechanical properties. Here, we describe the physicochemical properties of an electrospun polylactic acid (PLA)-gelatin blend with a 9:1 PLA:gelatin ratio. We found that a small content (10 wt%) of gelatin does not affect the extensibility and strength of wet electrospun PLA mats but significantly accelerates their in vitro and in vivo decomposition. After a month, the thickness of PLA-gelatin mats subcutaneously implanted in C57black mice decreased by 30%, while the thickness of the pure PLA mats remained almost unchanged. Thus, we suggest the inclusion of a small amount of gelatin as a simple tool to tune the biodegradation behavior of PLA mats.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9966984 | PMC |
http://dx.doi.org/10.3390/ijms24043535 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!