A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Integrative mRNA and microRNA Analysis Exploring the Inducing Effect and Mechanism of Diallyl Trisulfide (DATS) on Potato against Late Blight. | LitMetric

AI Article Synopsis

  • Potato late blight is a disease that makes potatoes grow poorly and lose value.
  • A natural compound called DATS can help fight this disease by stopping its growth and making potatoes healthier.
  • Researchers found that DATS boosts a specific enzyme in potatoes and affects many genes, showing it may help control potato late blight in an important way.

Article Abstract

Potato late blight, caused by , leads to a significant reduction in the yield and value of potato. Biocontrol displays great potential in the suppression of plant diseases. Diallyl trisulfide (DATS) is a well-known natural compound for biocontrol, although there is little information about it against potato late blight. In this study, DATS was found to be able to inhibit the hyphae growth of , reduce its pathogenicity on detached potato leaves and tubers, and induce the overall resistance of potato tubers. DATS significantly increases catalase (CAT) activity of potato tubers, and it does not affect the levels of peroxidase (POD), superoxide dismutase (SOD), and malondialdehyde (MDA). The transcriptome datasets show that totals of 607 and 60 significantly differentially expressed genes (DEGs) and miRNAs (DEMs) are detected. Twenty-one negatively regulated miRNA-mRNA interaction pairs are observed in the co-expression regulatory network, which are mainly enriched in metabolic pathways, biosynthesis of secondary metabolites, and starch and sucrose metabolism based on the KEGG pathway. Our observations provide new insight into the role of DATS in biocontrol of potato late blight.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9962630PMC
http://dx.doi.org/10.3390/ijms24043474DOI Listing

Publication Analysis

Top Keywords

potato late
16
late blight
16
diallyl trisulfide
8
trisulfide dats
8
potato
8
biocontrol potato
8
potato tubers
8
dats
5
integrative mrna
4
mrna microrna
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!