Transition-metal-modified zeolites have recently gained the greatest interest among scientists. Ab initio calculations within the density functional theory were used. The exchange and correlation functional was approximated with the Perdew-Burke-Ernzerhof (PBE) functional. Cluster models of ZSM-5 (AlSiOH) zeolites were used with Fe particles adsorbed above aluminum. The adsorption of three iron adsorbates inside the pores of the ZSM-5 zeolite-Fe, FeO and FeOH-was carried out with different arrangements of aluminum atoms in the zeolite structure. The DOS diagram and the HOMO, SOMO and LUMO molecular orbitals for these systems were analyzed. It has been shown that depending on the adsorbate and the position of aluminum atoms in the pore structure of the zeolite, the systems can be described as insulators or conductors, which significantly affects their activity. The main aim of the research was to understand the behavior of these types of systems in order to select the most efficient one for a catalytic reaction.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9967764 | PMC |
http://dx.doi.org/10.3390/ijms24043374 | DOI Listing |
J Chem Phys
January 2025
Key Laboratory of Efficient Low-carbon Energy Conversion and Utilization of Jiangsu Provincial Higher Education Institutions, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou 215009, China.
Despite the conventional view of liquid aluminum (l-Al) as a simple metal governed by the free-electron model, it exhibits unique bonding characteristics. This study uncovers a gradual transition from free electron to electride behavior in l-Al at high pressure and temperature, forming a type of two-component liquid where atomic and electride states coexist. The proportion of electride increases with pressure and temperature until reaching saturation, leading to notable changes in the pair-correlation function and coordination number of l-Al at saturation pressure.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
State Key Laboratory of Intelligent Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, People's Republic of China.
The Ni-rich LiNiCoMnO cathode (NCM, ≥ 0.6) suffers rapid capacity decay due to serious surface degradations from the corrosion of the electrolyte. The processes of the HO- and O-based AlO atomic layer deposition (ALD) on the single-crystal LiNiCoMnO (NCM83) are investigated by measurements to understand the mechanism of their different impacts on the electrochemical performance of NCM83.
View Article and Find Full Text PDFACS Omega
December 2024
Department of Electrical and Photonics Engineering, Technical University of Denmark, Roskilde 4000, Denmark.
Light Sci Appl
January 2025
Aalto University, Department of Electronics and Nanoengineering, Espoo, Finland.
Even though efficient near-infrared (NIR) detection is critical for numerous applications, state-of-the-art NIR detectors either suffer from limited capability of detecting incoming photons, i.e., have poor spectral responsivity, or are made of expensive group III-V non-CMOS compatible materials.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Pediatric Dentistry, Faculty of Dentistry, Damascus University, Damascus, Syrian Arab Republic.
This study aimed to evaluate the histological success of pulpotomy in primary molars using white mineral trioxide aggregate (WMTA) mixed with 2.25% sodium hypochlorite (NaOCl) gel and to evaluate in vitro its physical and chemical properties. The study had a clinical stage and an in-vitro stage.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!