Although opioids are widely used to treat moderate to severe pain, opioid addiction and the opioid overdose epidemic are becoming more serious. Although opioid receptor antagonists/partial agonists, such as naltrexone and buprenorphine, have relatively low selectivity for the μ-opioid receptor (MOP), they have been used for the management of opioid use disorder. The utility of highly selective MOP antagonists remains to be evaluated. Here, we biologically and pharmacologically evaluated a novel nonpeptide ligand, UD-030, as a selective MOP antagonist. UD-030 had more than 100-fold higher binding affinity for the human MOP (K = 3.1 nM) than for δ-opioid, κ-opioid, and nociceptin receptors (K = 1800, 460, and 1800 nM, respectively) in competitive binding assays. The [S]-GTPγS binding assay showed that UD-030 acts as a selective MOP full antagonist. The oral administration of UD-030 dose-dependently suppressed the acquisition and expression of morphine-induced conditioned place preference in C57BL/6J mice, and its effects were comparable to naltrexone. These results indicate the UD-030 may be a new candidate for the treatment of opioid use disorder, with characteristics that differ from traditional medications that are in clinical use.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9961271 | PMC |
http://dx.doi.org/10.3390/ijms24043351 | DOI Listing |
Sci Adv
January 2025
Infectious Diseases Translational Research Programme and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
Multidrug/oligosaccharidyl-lipid/polysaccharide (MOP) family transporters are essential in glycan synthesis, flipping lipid-linked precursors across cell membranes. Yet, how they select their substrates remains enigmatic. Here, we investigate the substrate specificity of the MOP transporters in the capsular polysaccharide (CPS) synthesis pathway in .
View Article and Find Full Text PDFWiley Interdiscip Rev Nanomed Nanobiotechnol
January 2025
School of Pharmacy and Waterloo Institute of Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, Canada.
Nucleic acid-based vaccines are leading-edge tools in developing next-generation preventative care. Much research has been done to convert vaccine gene therapy from an invasive to a noninvasive administration approach. The lung's large surface area and permeability make the pulmonary route a promising noninvasive delivery option for vaccines, with systemic and local applications.
View Article and Find Full Text PDFSkelet Muscle
December 2024
Rehabilitation Sciences Institute, University of Toronto, Toronto, ON, Canada.
Background: INTER- and INTRAmuscular fat (IMF) is elevated in high metabolic states and can promote inflammation. While magnetic resonance imaging (MRI) excels in depicting IMF, the lack of reproducible tools prevents the ability to measure change and track intervention success.
Methods: We detail an open-source fully-automated iterative threshold-seeking algorithm (ITSA) for segmenting IMF from T1-weighted MRI of the calf and thigh within three cohorts (CaMos Hamilton (N = 54), AMBERS (N = 280), OAI (N = 105)) selecting adults 45-85 years of age.
Commun Biol
December 2024
Robarts Research Institute, University of Western Ontario, London, ON, N6A 5B7, Canada.
The Pro/N-degron recognizing C-terminal to LisH (CTLH) complex is an E3 ligase of emerging interest in the developmental biology field and for targeted protein degradation (TPD) modalities. The human CTLH complex forms distinct supramolecular ring-shaped structures dependent on the multimerization of WDR26 or muskelin β-propeller proteins. Here, we find that, in HeLa cells, CTLH complex E3 ligase activity is dictated by an interplay between WDR26 and muskelin in tandem with muskelin autoregulation.
View Article and Find Full Text PDFNeuropsychopharmacol Rep
March 2025
Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.
Although methamphetamine (METH) and other addictive substance use disorders are a major social problem worldwide, appropriate pharmacotherapies have not yet been discovered. Subtype-nonselective opioid receptor antagonists, such as naltrexone (NTX), have been reported to suppress METH addiction, but unclear are the opioid receptor subtypes that are involved in this beneficial effect. To clarify the role of μ-opioid receptors (MOPs), we examined effects of the novel nonpeptidic MOP-selective antagonist UD-030 on the acquisition and expression of METH-induced conditioned place preference (CPP) using behavioral tests in C57BL/6J mice.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!