Assessment of Inhibition of Biofilm Formation on Non-Thermal Plasma-Treated TiO Nanotubes.

Int J Mol Sci

Department of Prosthodontics, School of Dentistry, Chonnam National University, 33 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea.

Published: February 2023

Peri-implantitis is an inflammatory disease similar to periodontitis, caused by biofilms formed on the surface of dental implants. This inflammation can spread to bone tissues and result in bone loss. Therefore, it is essential to inhibit the formation of biofilms on the surface of dental implants. Thus, this study examined the inhibition of biofilm formation by treating TiO nanotubes with heat and plasma. Commercially pure titanium specimens were anodized to form TiO nanotubes. Heat treatment was performed at 400 and 600 °C, and atmospheric pressure plasma was applied using a plasma generator (PGS-200, Expantech, Suwon, Republic of Korea). Contact angles, surface roughness, surface structure, crystal structure, and chemical compositions were measured to analyze the surface properties of the specimens. The inhibition of biofilm formation was assessed using two methods. The results of this study showed that the heat treatment of TiO nanotubes at 400 °C inhibited the adhesion of (), associated with initial biofilm formation, and that heat treatment of TiO nanotubes at 600 °C inhibited the adhesion of (), which causes peri-implantitis. Applying plasma to the TiO nanotubes heat-treated at 600 °C inhibited the adhesion of and

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9967395PMC
http://dx.doi.org/10.3390/ijms24043335DOI Listing

Publication Analysis

Top Keywords

tio nanotubes
24
biofilm formation
16
inhibition biofilm
12
heat treatment
12
600 °c
12
°c inhibited
12
inhibited adhesion
12
surface dental
8
dental implants
8
nanotubes heat
8

Similar Publications

Nanoparticle-Doped Antibacterial and Antifungal Coatings.

Polymers (Basel)

January 2025

Department of Chemical Engineering, Dr B R Ambedkar National Institute of Technology, Jalandhar 144011, Punjab, India.

Antimicrobial polymeric coatings rely not only on their surface functionalities but also on nanoparticles (NPs). Antimicrobial coatings gain their properties from the addition of NPs into a polymeric matrix. NPs that have been used include metal-based NPs, metal oxide NPs, carbon-based nanomaterials, and organic NPs.

View Article and Find Full Text PDF

Dye-sensitization is a promising strategy to improve the light absorption and photoactivity abilities of wide-bandgap semiconductors, like TiO. For effective water-splitting photoanodes with no sacrificial agents, the electrochemical potential of the dye must exceed the thermodynamic threshold needed for the oxygen evolution reaction. This study investigates two promising organic cyanoacrylic dyes, designed to meet that criterion by means of theoretical calculations.

View Article and Find Full Text PDF

The utilisation of implantable medical devices has become safer and more prevalent since the establishment of sterilisation methods and techniques a century ago. Nevertheless, device-associated infections remain a significant and growing concern, particularly in light of the continued rise in the number of medical device implantations. This underscores the imperative for the development of efficacious prevention and treatment strategies for device-associated infections, as well as further investigation into the design of innovative antibacterial surfaces for medical device applications.

View Article and Find Full Text PDF

Exosomes have emerged as a powerful biomarker for early cancer diagnosis, however, accurately detecting cancer-derived exosomes in biofluids remains a crucial challenge. In this study, we present a novel label-free electrochemical biosensor utilizing titanium dioxide nanotube array films (TiONTAs) for the sensitive detection of exosomes in complex biological samples. This innovative biosensor takes advantage of the excellent electrochemical properties of TiONTAs and their specific interactions with the phosphate groups of exosomes.

View Article and Find Full Text PDF

This study presents the preparation, characterization, and application of a novel Multi-walled carbon nanotubes/TiO/chitosan (MWCNT/TiO/CS) nanocomposite, prepared using a hydrothermal method, for the removal of malachite green (MG) dye from aqueous solutions. Adsorption studies revealed optimal dye removal within 15 min of adsorption equilibrium time, with maximum removal efficiency of 98.53 % at pH 7.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!