The phenolic compounds containing hydroxytyrosol are the minor components of virgin olive oil (VOO) with the greatest impact on its functional properties and health benefits. Olive breeding for improving the phenolic composition of VOO is strongly dependent on the identification of the key genes determining the biosynthesis of these compounds in the olive fruit and also their transformation during the oil extraction process. In this work, olive polyphenol oxidase (PPO) genes have been identified and fully characterized in order to evaluate their specific role in the metabolism of hydroxytyrosol-derived compounds by combining gene expression analysis and metabolomics data. Four PPO genes have been identified, synthesized, cloned and expressed in , and the functional identity of the recombinant proteins has been verified using olive phenolic substrates. Among the characterized genes, two stand out: (i) with its diphenolase activity, which is very active in the oxidative degradation of phenols during oil extraction and also seems to be highly involved in the natural defense mechanism in response to biotic stress, and (ii) , which codes for a tyrosinase protein, having diphenolase but also monophenolase activity, which catalyzes the hydroxylation of tyrosol to form hydroxytyrosol.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9962951 | PMC |
http://dx.doi.org/10.3390/ijms24043233 | DOI Listing |
Foods
December 2024
Department of Cardio-Thoracic Pathology, Faculty of Medicine, "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania.
Polyunsaturated fatty acids (PUFAs) are vital dietary elements that play a significant role in human nutrition. They are highly regarded for their positive contributions to overall health and well-being. Beyond the fact that they provide a substantial supply of energy to the body (a role that saturated fats can also perform), these unsaturated fatty acids and, especially, the essential ones are involved in cell membrane structure, blood pressure regulation, and coagulation; participate in the proper functioning of the immune system and assimilation of fat-soluble vitamins; influence the synthesis of pro- and anti-inflammatory substances; and protect the cardiovascular system.
View Article and Find Full Text PDFMicrobiol Spectr
January 2025
Institut für Biostatistik und Informatik in Medizin und Alternsforschung, Universitätsmedizin Rostock, Rostock, Germany.
The gut microbiome is amenable to dietary interventions, and polyphenol-rich diets have been shown to enhance abundances of bacteria associated with short-chain fatty acid (SCFA) production. We examined the effects of a strawberry-based intervention on the gut microbiome of 69 healthy elderly German adults. Participants in five groups consumed varying amounts of strawberries, freeze-dried strawberries, and capers in olive oil over 10 weeks as part of a randomized controlled trial.
View Article and Find Full Text PDFNutrients
December 2024
Scientific Center for Innovative Drugs, Volgograd State Medical University, Novorossiyskaya 39, 400087 Volgograd, Russia.
Resveratrol and extra virgin olive oil are both recognized for their potential protective effects against age-related diseases. This overview highlights their mechanisms of action, health benefits, and the scientific evidence supporting their roles in promoting longevity and cognitive health. A literature search was conducted.
View Article and Find Full Text PDFPharmaceuticals (Basel)
December 2024
Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy.
: Chronic kidney disease (CKD) geriatric patients experience a premature aging process, compared with the general population of the same age and sex. The uremic milieu is capable of enhancing oxidative stress (OS) and microinflammation, leading to a pro-aging mechanism and an increased protein catabolism. Moreover, cognitive disorders are observed.
View Article and Find Full Text PDFAntioxidants (Basel)
December 2024
Faculty of Medicine, Nutrition and Dietetics School, Universidad Finis Terrae, Pedro de Valdivia 1509, Providencia, Santiago 7501015, Chile.
Olive leaves are agro-industrial waste that pose an environmental management problem. However, they contain polyphenolic compounds with important bioactive properties beneficial to human. This study aimed to evaluate the effectiveness of two extraction technologies (pressurized liquid extraction and ultrasound-assisted extraction) combined with green solvents (pure water, 15% ethanol, and 15% glycerol) at 50 °C and 70 °C.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!