A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Species-Specific Response of Corals to Imbalanced Ratios of Inorganic Nutrients. | LitMetric

Dissolved inorganic phosphorus (DIP) is a limiting nutrient in the physiology of scleractinian corals. Anthropogenic addition of dissolved inorganic nitrogen (DIN) to coastal reefs increases the seawater DIN:DIP ratio and further increases P limitation, which is detrimental to coral health. The effects of imbalanced DIN:DIP ratios on coral physiology require further investigation in coral species other than the most studied branching corals. Here we investigated the nutrient uptake rates, elemental tissue composition and physiology of a foliose stony coral, , and a soft coral, , exposed to four different DIN: DIP ratios (0.5:0.2, 0.5:1, 3:0.2, 3:1). The results show that had high uptake rates of DIN and DIP, proportional to the seawater nutrient concentrations. DIN enrichment alone led to an increase in tissue N content, shifting the tissue N:P ratio towards P limitation. However, had 5 times lower uptake rates and only took up DIN when the seawater was simultaneously enriched with DIP. This double uptake of N and P did not alter tissue stoichiometry. This study allows us to better understand the susceptibility of corals to changes in the DIN:DIP ratio and predict how coral species will respond under eutrophic conditions in the reef.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9962417PMC
http://dx.doi.org/10.3390/ijms24043119DOI Listing

Publication Analysis

Top Keywords

uptake rates
12
dissolved inorganic
8
dindip ratio
8
coral species
8
din dip
8
rates din
8
coral
6
din
5
species-specific response
4
corals
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!