Effects of Berries, Phytochemicals, and Probiotics on Atherosclerosis through Gut Microbiota Modification: A Meta-Analysis of Animal Studies.

Int J Mol Sci

Department of Nutrition and Integrative Physiology, College of Health and Human Sciences, Florida State University, Tallahassee, FL 32306, USA.

Published: February 2023

Atherosclerosis is a major cause of death and disability. The beneficial effects of phytochemicals and probiotics on atherosclerosis have gained significant interest since these functional foods can improve inflammation, oxidative stress, and microbiome dysbiosis. The direct effect of the microbiome in atherosclerosis, however, needs further elucidation. The objective of this work was to investigate the effects of polyphenols, alkaloids, and probiotics on atherosclerosis using a meta-analysis of studies with mouse models of atherosclerosis. Identification of eligible studies was conducted through searches on PubMed, Embase, Web of Science, and Science Direct until November 2022. The results showed that phytochemicals reduced atherosclerosis, which was significant in male mice, but not in females. Probiotics, on the other hand, showed significant reductions in plaque in both sexes. Berries and phytochemicals modulated gut microbial composition by reducing the Firmicutes/Bacteroidetes (F/B) ratio and by upregulating health-promoting bacteria, including . This analysis suggests that phytochemicals and probiotics can reduce atherosclerosis in animal models, with a potentially greater effect on male animals. Thus, consumption of functional foods rich in phytochemicals as well as probiotics are viable interventions to improve gut health and reduce plaque burden in patients suffering from cardiovascular disease (CVD).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9960548PMC
http://dx.doi.org/10.3390/ijms24043084DOI Listing

Publication Analysis

Top Keywords

phytochemicals probiotics
12
probiotics atherosclerosis
12
berries phytochemicals
8
atherosclerosis
8
functional foods
8
phytochemicals
6
probiotics
6
effects berries
4
atherosclerosis gut
4
gut microbiota
4

Similar Publications

Biopeptide-rich fermented hemp seeds: Boosting anti-inflammatory and immune responses through Lactiplantibacillus plantarum probiotic fermentation.

Int J Biol Macromol

December 2024

Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, 24341, South Korea; Future F Biotech Co., Ltd, Chuncheon 24341, South Korea. Electronic address:

Article Synopsis
  • Hemp seeds are shown to have anti-inflammatory and immunological benefits, and fermentation with Lactiplantibacillus plantarum enhances these properties.
  • The study found that fermented hemp seed extracts significantly inhibited inflammatory cytokines more effectively than unfermented seeds, indicating a boost of 25% to 39.3% in their effects.
  • Metabolomic analysis identified novel bioactive compounds linked to these enhanced effects, suggesting fermented hemp seeds could be developed into functional food ingredients for health and wellness applications.
View Article and Find Full Text PDF

Cardiovascular diseases are one of the leading causes of mortality and morbidity worldwide, with the total number of cases increasing to 523 million in 2019. Despite the advent of new drugs, cardiovascular mortality has increased at an alarming rate of 53.7 % from 12.

View Article and Find Full Text PDF

This study investigates the multifaceted potential of Tripolium pannonicum methanolic extract, focusing on its antimicrobial, antioxidant, and prebiotic properties alongside a comprehensive phytochemical analysis. The antioxidant capacity of the methanolic extract was demonstrated through DPPH radical scavenging and iron ion chelating assays, revealing an IC50 value of 0.073 mg/mL and 5.

View Article and Find Full Text PDF

The increasing demand for plant-based beverages with improved functional and sensory qualities has guided this study, which examines the bioactive content, functional, and sensory properties of a rice, apple pomace, and sea buckthorn beverage (RASB) fermented with probiotic and . We found out that total polyphenol content (TPC), total flavonoid content (TFC), and β-carotene were significantly higher in samples with , particularly in coculture samples. These samples also exhibited elevated alcohol by volume (ABV).

View Article and Find Full Text PDF

Fermentation for Revalorisation of Fruit and Vegetable By-Products: A Sustainable Approach Towards Minimising Food Loss and Waste.

Foods

November 2024

Postharvest and Refrigeration Group, Universidad Politécnica de Cartagena (UPCT), Paseo Alfonso XIII, 48, 30203 Cartagena, Spain.

In a world increasingly focused on sustainability and integrated resource use, the revalorisation of horticultural by-products is emerging as a key strategy to minimise food loss and waste while maximising value within the food supply chain. Fermentation, one of the earliest and most versatile food processing techniques, utilises microorganisms or enzymes to induce desirable biochemical transformations that enhance the nutritional value, digestibility, safety, and sensory properties of food products. This process has been identified as a promising method for producing novel, high-value food products from discarded or non-aesthetic fruits and vegetables that fail to meet commercial standards due to aesthetic factors such as size or appearance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!