Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The COVID-19 pandemic has demonstrated the importance of unbiased, real-time statistics of trends in disease events in order to achieve an effective response. Because of reporting delays, real-time statistics frequently underestimate the total number of infections, hospitalizations and deaths. When studied by event date, such delays also risk creating an illusion of a downward trend. Here, we describe a statistical methodology for predicting true daily quantities and their uncertainty, estimated using historical reporting delays. The methodology takes into account the observed distribution pattern of the lag. It is derived from the "removal method"-a well-established estimation framework in the field of ecology.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9959682 | PMC |
http://dx.doi.org/10.3390/ijerph20043040 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!