Short tandem DNA repeats are drivers of genome instability. To identify suppressors of break-induced mutagenesis human cells, unbiased genetic screens were conducted using a lentiviral shRNA library. The recipient cells possessed fragile non-B DNA that could induce DNA double-strand breaks (DSBs), integrated at an ectopic chromosomal site adjacent to a thymidine kinase marker gene. Mutagenesis of the thymidine kinase gene rendered cells resistant to the nucleoside analog ganciclovir (GCV). The screen identified genes that have established roles in DNA replication and repair, chromatin modification, responses to ionizing radiation, and genes encoding proteins enriched at replication forks. Novel loci implicated in BIR included olfactory receptors, the G0S2 oncogene/tumor suppressor axis, the EIF3H-METTL3 translational regulator, and the SUDS3 subunit of the Sin3A corepressor. Consistent with a role in suppressing BIR, siRNA knockdown of selected candidates increased the frequency of the GCV phenotype and increased DNA rearrangements near the ectopic non-B DNA. Inverse PCR and DNA sequence analyses showed that hits identified in the screen increased genome instability. Further analysis quantitated repeat-induced hypermutagenesis at the ectopic site and showed that knockdown of a primary hit, COPS2, induced mutagenic hotspots, remodeled the replication fork, and increased nonallelic chromosome template switches.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9956954PMC
http://dx.doi.org/10.3390/genes14020398DOI Listing

Publication Analysis

Top Keywords

suppressors break-induced
8
human cells
8
genome instability
8
non-b dna
8
thymidine kinase
8
dna
7
replication
4
break-induced replication
4
replication human
4
cells
4

Similar Publications

Mechanisms of tandem duplication in the cancer genome.

DNA Repair (Amst)

January 2025

Department of Data Science, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Pathology, Harvard Medical School, Boston, MA 02115,  USA; Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA.

Tandem duplications (TD) are among the most frequent type of structural variant (SV) in the cancer genome. They are characterized by a single breakpoint junction that defines the boundaries and the size of the duplicated segment. Cancer-associated TDs often increase oncogene copy number or disrupt tumor suppressor gene function, and thus have important roles in tumor evolution.

View Article and Find Full Text PDF
Article Synopsis
  • Break-induced replication (BIR) is a highly mutagenic process that needs tight regulation, and this study reveals the critical role of the protein 53BP1 in controlling BIR after double strand breaks (DSBs).
  • Loss of 53BP1 leads to increased hyperrecombination that activates BIR, which is connected to specific DNA synthesis processes on single-stranded DNA (ssDNA) overhangs, resulting in larger genome deletions and instability.
  • The findings suggest that targeting the interaction between 53BP1 and BIR could open up new avenues for cancer treatment.
View Article and Find Full Text PDF

DNA polymerase δ: A single Pol31 polymorphism suppresses the strain background-specific lethality of Pol32 inactivation in Saccharomyces cerevisiae.

DNA Repair (Amst)

July 2023

Institut Curie Research Center, CNRS UMR3244, PSL Research University, 26 rue d'Ulm, 75248 Paris Cedex 05, France; IRCAN, CNRS UMR7284, INSERM U1081, Université Côte d'Azur, 28 avenue de Valombrose, 06107 Nice, France. Electronic address:

The evolutionarily conserved DNA polymerase delta (Polδ) plays several essential roles in eukaryotic DNA replication and repair, responsible for the synthesis of the lagging-strand, lower replicative mutagenesis via its proof-reading exonuclease activity and synthetizes both strands during break-induced replication. In Saccharomyces cerevisiae, the Polδ protein complex consists of three subunits encoded by the POL3, POL31 and POL32 genes. Surprisingly, in contrast to POL3 and POL31, the POL32 gene deletion was found to be viable but lethal in all other eukaryotes, raising the question to which extent the viability of the POL32 deletion in S.

View Article and Find Full Text PDF

Short tandem DNA repeats are drivers of genome instability. To identify suppressors of break-induced mutagenesis human cells, unbiased genetic screens were conducted using a lentiviral shRNA library. The recipient cells possessed fragile non-B DNA that could induce DNA double-strand breaks (DSBs), integrated at an ectopic chromosomal site adjacent to a thymidine kinase marker gene.

View Article and Find Full Text PDF

In a genome-wide screening for components of the dsDNA-break-induced IKK-NF-κB pathway, we identified scores of regulators, including tumor susceptibility gene TSG101. TSG101 is essential for DNA damage-induced formation of cellular poly(ADP-ribose) (PAR). TSG101 binds to PARP1 and is required for PARP1 activation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!