has widely been reported as a plant growth-promoting rhizobacteria (PGPR). However, the important genomic insights into plant growth promotion in this species remain undescribed. In this study, the genome of G78 was sequenced using Illumina NovaSeq PE150. It contains 8,576,872 bp with a GC content of 58.5%, and was taxonomically characterized. Additionally, a total of 7337 genes with 143 tRNAs, 41 rRNAs, and 5 ncRNAs were identified. This strain can prohibit the growth of the plant pathogen, but also has the capability to form biofilm, solubilize phosphate, and produce IAA. Twenty-six gene clusters encoding secondary metabolites were identified, and the genotypic characterization indirectly proved its resistant ability to ampicillin, bacitracin, polymyxin and chloramphenicol. The putative exopolysaccharide biosynthesis and biofilm formation gene clusters were explored. According to the genetic features, the potential monosaccharides of its exopolysaccharides for G78 may include glucose, mannose, galactose, fucose, that can probably be acetylated and pyruvated. Conservation of the compared with other 40 species suggests that Pel may be specific biofilm matrix component in . Several genes relevant to plant growth-promoting traits, i.e., IAA production and phosphate solubilization are well conserved compared with other 40 other strains. The current study can benefit for understanding the plant growth-promoting traits of as well as its potential application in agriculture as PGPR.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9956331 | PMC |
http://dx.doi.org/10.3390/genes14020392 | DOI Listing |
Int J Phytoremediation
January 2025
Institute of Soil & Environmental Sciences, University of Agriculture, Pakistan.
Due to a lack of high-quality water, farmers have been compelled to use sewage water for irrigation, contaminating agricultural soils with multiple heavy metals. For the remediation of contaminated soil, plant growth-promoting rhizobacteria (PGPR), pressmud (PM), and iron (III) oxide were used to improve the growth and phytostabilization potential of chickpea grown in contaminated soil. Contaminated soil was collected from a nearby field, receiving sewage and factory water over the last 60 years.
View Article and Find Full Text PDFFront Microbiol
December 2024
Department of Plant Physiology, Institute for Biological Research "Siniša Stanković" - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia.
Introduction: The common duckweed () is a model organism for investigation of plant physiology, especially stress-related responses. Its two physiological characteristics are of special interest: (1) salt-stressed duckweeds may accumulate starch, a precursor for biofuel; (2) duckweeds are associated with various beneficial (plant-growth promoting, PGP) bacterial strains. In this paper, we analyzed the role of two bacterial strains: D1-104/3 and C31-106/3 in regulation of duckweed's growth and antioxidative responses to salt (10 and 100 mM NaCl) and hypothesized that they alleviate salt-induced oxidative stress.
View Article and Find Full Text PDFWorld J Microbiol Biotechnol
December 2024
Departamento de Biología Molecular, Facultad de Ciencias Exactas Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto (UNRC), Ruta Nacional 36 Km 601, 5800, Río Cuarto, Córdoba, CP, Argentina.
Arsenic (As) contamination in agricultural groundwater and soil is a significant economic and health problem worldwide. It inhibits soybean (Glycine max (L.) Merr.
View Article and Find Full Text PDFWorld J Microbiol Biotechnol
December 2024
Department of Crop and Animal Production, Safiye Cikrikcioglu Vocational College, Kayseri University, Kayseri, Türkiye.
The rhizosphere, the soil zone surrounding plant roots, serves as a reservoir for numerous beneficial microorganisms that enhance plant productivity and crop yield, with substantial potential for application as biofertilizers. These microbes play critical roles in ecological processes such as nutrient recycling, organic matter decomposition, and mineralization. Plant growth-promoting rhizobacteria (PGPR) represent a promising tool for sustainable agriculture, enabling green management of crop health and growth, being eco-friendly alternatives to replace chemical fertilizers and pesticides.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Plant Pathology, Faculty of Agriculture, Annamalai University, Chidambaram, India.
Endophytes isolated from seaweeds emerge as promising biocontrol agents against broad spectrum of plant diseases. The endophytic bacteria were isolated from the seaweed (Sargassum wightii) to manage the chilli fruit rot pathogen Fusarium incarnatum. The antifungal activity of the isolated bacteria was tested by dual culture assay and plant growth-promoting activity was also tested by the standard paper towel method.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!