- Pers. de-Bary is an important fungal pathogen causing rust in peas ( L.). It is reported in mild to severe forms from different parts of the world where the pea is grown. Host specificity has been indicated in this pathogen in the field but has not yet been established under controlled conditions. The uredinial states of - are infective under temperate and tropical conditions. Aeciospores are infective in the Indian subcontinent. The genetics of rust resistance was reported qualitatively. However, non-hypersensitive resistance responses and more recent studies emphasized the quantitative nature of pea rust resistance. Partial resistance/slow rusting had been described as a durable resistance in peas. Such resistance is of the pre-haustorial type and expressed as longer incubation and latent period, poor infection efficiency, a smaller number of aecial cups/pustules, and lower units of AUDPC (Area Under Disease Progress Curve). Screening techniques dealing with slow rusting should consider growth stages and environment, as both have a significant influence on the disease scores. Our knowledge about the genetics of rust resistance is increasing, and now molecular markers linked with gene/QTLs (Quantitative Trait Loci) of rust resistance have been identified in peas. The mapping efforts conducted in peas came out with some potent markers associated with rust resistance, but they must be validated under multi-location trails before use in the marker-assisted selection of rust resistance in pea breeding programs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9957278PMC
http://dx.doi.org/10.3390/genes14020374DOI Listing

Publication Analysis

Top Keywords

rust resistance
24
resistance
10
rust
8
pers de-bary
8
genetics rust
8
rust pers
4
pea
4
de-bary pea
4
pea status
4
status future
4

Similar Publications

Chrysanthemum white rust (CWR), caused by Puccinia horiana Heen., is a serious disease of chrysanthemum worldwide. This disease reduces the quality and yield of Chrysanthemum morifolium, leading to significant losses for chrysanthemum growers and industries.

View Article and Find Full Text PDF

Wheat stripe rust, caused by a biotrophic, obligate fungus f. sp. (), is a destructive wheat fungal disease that exists worldwide and caused huge yield reductions during pandemic years.

View Article and Find Full Text PDF

Revisiting Mechanism of NaOH Dechlorination Treatments for Bronze Conservation in Quantitative Study.

Materials (Basel)

December 2024

Institute for Culture Heritage and History of Science and Technology, University of Science and Technology Beijing, Beijing 100083, China.

Dechlorination is a crucial strategy for archeological bronze stabilization to resist corrosion induced by cuprous chloride (CuCl). Conventional samples, either archeological or simulated ones, have deficiencies in revealing dechlorination mechanisms for their complex rust layers and difficulties in quantifying chlorine content. In this work, samples with fixed chlorine amounts were prepared by compressing method to solve overcomplicated and unquantifiable problems.

View Article and Find Full Text PDF

Advances in Research on Southern Corn Rust, a Devasting Fungal Disease.

Int J Mol Sci

December 2024

Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.

Southern corn rust (SCR), caused by the obligate biotrophic fungus Underw., represents one of the most devastating threats to maize production, potentially resulting in yield losses exceeding 50%. Due to global climate change and cropping practices, epiphytotics of SCR have been increasingly reported, and are progressively spreading from tropical and subtropical maize growing areas to higher latitude areas.

View Article and Find Full Text PDF

Characterisation of virulence of f. sp. in Australia in the 2023 growing season.

Plant Dis

January 2025

CSIRO, Agriculture and Food, Canberra, Australian Capital Territory, Australia;

Crown rust caused by the basidiomycete fungus f. sp. () results in significant crop losses worldwide.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!