OCT and ERG Techniques in High-Throughput Phenotyping of Mouse Vision.

Genes (Basel)

Czech Centre for Phenogenomics, Institute of Molecular Genetics, Czech Academy of Sciences, 252 50 Vestec, Czech Republic.

Published: January 2023

The purpose of the study is to demonstrate coherent optical tomography and electroretinography techniques adopted from the human clinical practice to assess the morphology and function of the mouse retina in a high-throughput phenotyping environment. We present the normal range of wild-type C57Bl/6NCrl retinal parameters in six age groups between 10 and 100 weeks as well as examples of mild and severe pathologies resulting from knocking out a single protein-coding gene. We also show example data obtained by more detailed analysis or additional methods useful in eye research, for example, the angiography of a superficial and deep vascular complex. We discuss the feasibility of these techniques in conditions demanding a high-throughput approach such as the systemic phenotyping carried out by the International Mouse Phenotyping Consortium.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9956909PMC
http://dx.doi.org/10.3390/genes14020294DOI Listing

Publication Analysis

Top Keywords

high-throughput phenotyping
8
oct erg
4
erg techniques
4
techniques high-throughput
4
phenotyping
4
phenotyping mouse
4
mouse vision
4
vision purpose
4
purpose study
4
study demonstrate
4

Similar Publications

Background: The risk of mosquito-borne disease transmission is increasing in temperate climates with the colonization and proliferation of the Asian tiger mosquito vector Aedes albopictus and the rapid mass transport of passengers returning from tropical regions where viruses are endemic. The prevention of major Aedes-borne viruses heavily relies on the use of insecticides for vector control, mainly pyrethroids. In Europe, only deltamethrin is authorized.

View Article and Find Full Text PDF

Evaluation of wheat drought resistance using hyperspectral and chlorophyll fluorescence imaging.

Plant Physiol Biochem

December 2024

State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, 712100, China; Key Laboratory of Wheat Biology and Genetic Improvement on Northwestern China, Ministry of Agriculture and Rural Affairs, Xianyang, 712100, China. Electronic address:

Photosynthesis drives crop growth and production, and strongly affects grain yields; therefore, it is an ideal trait for wheat drought resistance breeding. However, studies of the negative effects of drought stress on wheat photosynthesis rates have lacked accurate evaluation methods, as well as high-throughput techniques. We investigated photosynthetic capacity under drought stress in wheat varieties with varying degrees of drought stress resistance using hyperspectral and chlorophyll fluorescence (ChlF) imaging data.

View Article and Find Full Text PDF

Ex vivo imaging-based high content phenotyping of patients with rheumatoid arthritis.

EBioMedicine

December 2024

CeMM Research Centre for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria; Centre for Physiology and Pharmacology, Medical University of Vienna; Vienna, Austria. Electronic address:

Background: High content imaging-based functional precision medicine approaches have been developed and successfully applied in the field of haemato-oncology. For rheumatoid arthritis (RA), treatment selection is still based on a trial-and-error principle, and biomarkers for patient stratification and drug response prediction are needed.

Methods: A high content, high throughput microscopy-based phenotyping pipeline for peripheral blood mononuclear cells (PBMCs) was developed, allowing for the quantification of cell type frequencies, cell type specific morphology and intercellular interactions from patients with RA (n = 65) and healthy controls (HC, n = 33).

View Article and Find Full Text PDF

Identification of modulators of the ALT pathway through a native FISH-based optical screen.

Cell Rep

December 2024

Laboratory of Genome Integrity, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA. Electronic address:

A significant portion of human cancers utilize a recombination-based pathway, alternative lengthening of telomeres (ALT), to extend telomeres. To gain further insights into this pathway, we developed a high-throughput imaging-based screen named TAILS (telomeric ALT in situ localization screen) to identify genes that either promote or inhibit ALT activity. Screening over 1,000 genes implicated in DNA transactions, TAILS reveals both well-established and putative ALT modulators.

View Article and Find Full Text PDF

Distinctive molecular approaches and tools, particularly high-throughput SNP genotyping, have been applied to determine and discover SNPs, potential genes of interest, indicators of evolutionary selection, genetic abnormalities, molecular indicators, and loci associated with quantitative traits (QTLs) in various livestock species. These methods have also been used to obtain whole-genome sequencing (WGS) data, enabling the implementation of genomic selection. Genomic selection allows for selection decisions based on genomic-estimated breeding values (GEBV).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!