Inherited disorders of biogenic amine metabolism are genetically determined conditions resulting in dysfunctions or lack of enzymes involved in the synthesis, degradation, or transport of dopamine, serotonin, adrenaline/noradrenaline, and their metabolites or defects of their cofactor or chaperone biosynthesis. They represent a group of treatable diseases presenting with complex patterns of movement disorders (dystonia, oculogyric crises, severe/hypokinetic syndrome, myoclonic jerks, and tremors) associated with a delay in the emergence of postural reactions, global development delay, and autonomic dysregulation. The earlier the disease manifests, the more severe and widespread the impaired motor functions. Diagnosis mainly depends on measuring neurotransmitter metabolites in cerebrospinal fluid that may address the genetic confirmation. Correlations between the severity of phenotypes and genotypes may vary remarkably among the different diseases. Traditional pharmacological strategies are not disease-modifying in most cases. Gene therapy has provided promising results in patients with DYT-DDC and in vitro models of DYT/PARK-SLC6A3. The rarity of these diseases, combined with limited knowledge of their clinical, biochemical, and molecular genetic features, frequently leads to misdiagnosis or significant diagnostic delays. This review provides updates on these aspects with a final outlook on future perspectives.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9957200 | PMC |
http://dx.doi.org/10.3390/genes14020263 | DOI Listing |
Medicine (Baltimore)
January 2025
Epilepsy Center, Children's Hospital Affiliated to Shandong University, Jinan, China.
Rationale: Developmental and epileptic encephalopathy (DEE) defines a group of severe and heterogeneous neurodevelopmental disorders. The voltage-gated potassium channel subfamily 2 voltage-gated potassium channel α subunit encoded by the KCNB1 gene is essential for neuronal excitability. Previous studies have shown that KCNB1 variants can cause DEE.
View Article and Find Full Text PDFExpert Opin Drug Metab Toxicol
January 2025
Institute of Psychology, University of Innsbruck, Austria.
Introduction: The prevalence of polypharmacy and the increasing availability of pharmacogenetic information in clinical practice have raised the prospect of data-driven clinical decision making when addressing the issues of drug-drug interactions and genetic polymorphisms in metabolizing enzymes. Inhibition of metabolizing enzymes in drug interactions can lead to genotype-phenotype discrepancies (phenoconversion) that reduce the relevance of individual pharmacogenetic information.
Areas Covered: The aim of this review is to provide an overview on existing models of phenoconversion and we discuss how phenoconversion models may be developed to estimate joint drug-interactions and genetic effects.
Anim Biotechnol
December 2025
Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India.
Copy number variations (CNVs) have become widely acknowledged as a significant source of genomic variability and phenotypic variance. To understand the genetic variants in horses, CNVs from six Indian horse breeds, Manipuri, Zanskari, Bhutia, Spiti, Kathiawari and Marwari were discovered using Axiom Equine Genotyping Array. These breeds differed in agro-climatic adaptation with distinct phenotypic characters.
View Article and Find Full Text PDFEquine Vet J
January 2025
UCD School of Agriculture and Food Science, University College Dublin, Dublin, Ireland.
Background: Equine recurrent laryngeal neuropathy (RLN) is an economically important upper respiratory tract (URT) disease with a genetic contribution to risk, but genetic variants independent of height have not been identified for Thoroughbreds. The method of clinical assessment for RLN is critical to accurately phenotype groups for genetic studies.
Objectives: To identify genetic risk loci for RLN in Thoroughbreds in a genome-wide association study (GWAS) following high-resolution phenotyping.
PeerJ
January 2025
Museum of Natural History, University of Wroclaw, Wroclaw, Poland.
Background: Legless lizards, the slow worms of the genus are forming secondary contact zones within their Europe-wide distribution.
Methods: We examined 35 populations of and to identify the level of morphological and genetic divergence in Poland. We applied a conventional study approach using metric, meristic, and categorial (coloration) features for a phenotype analysis, and two standard molecular markers, a mitochondrial (NADH-ubiquinone oxidoreductase chain 2; ) and a nuclear (V(D)J recombination-activating protein 1; ) one.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!