Pesticide residues in grain products are a major issue due to their comprehensive and long-term impact on human health, and quantitative modeling on the degradation of pesticide residues facilitate the prediction of pesticide residue level with time during storage. Herein, we tried to study the effect of temperature and relative humidity on the degradation profiles of five pesticides (carbendazim, bensulfuron methyl, triazophos, chlorpyrifos, and carbosulfan) in wheat and flour and establish quantitative models for prediction purpose. Positive samples were prepared by spraying the corresponding pesticide standards of certain concentrations. Then, these positive samples were stored at different combinations of temperatures (20 °C, 30 °C, 40 °C, 50 °C) and relative humidity (50%, 60%, 70%, 80%). Samples were collected at specific time points, ground, and the pesticide residues were extracted and purified by using QuEChERS method, and then quantified by using UPLC-MS/MS. Quantitative model of pesticide residues was constructed using Minitab 17 software. Results showed that high temperature and high relative humidity accelerate the degradation of the five pesticide residues, and their degradation profiles and half-lives over temperature and relative humidity varied among pesticides. The quantitative model for pesticide degradation in the whole process from wheat to flour was constructed, with R above 0.817 for wheat and 0.796 for flour, respectively. The quantitative model allows the prediction of the pesticide residual level in the process from wheat to flour.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9957015 | PMC |
http://dx.doi.org/10.3390/foods12040788 | DOI Listing |
Spectrochim Acta A Mol Biomol Spectrosc
December 2024
School of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Reaction Engineering, Laboratory of New Energy & New Function Materials, Yanan University, Yan'an 716000, China.
Elemental analysis, infrared spectroscopy, and X-ray single crystal diffraction indicated that a novel metal-organic framework (Tb-MOF) designated as 0.5n[Hbpy]·[Tb(dpa)(HO)]·4nHO was synthesized successfully, (where Hdpa = 5-(3, 4-dicarboxy- phenoxy) isophenic acid, bpy = protonated 4,4'-bipyridine). Tb-MOF adopts a 3D network structure based on Tb ions and the (dpa) ligand through µ: η, η, η, η binding modes.
View Article and Find Full Text PDFTalanta
December 2024
College of Geography and Environmental Sciences, College of Chemistry and Materials Sciences, Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, 321004, China. Electronic address:
Chlorpyrifos (CPF), a widely used organophosphorus pesticide, presents substantial risks to both environmental and human health due to its persistent accumulation, thereby necessitating the development of effective detection methods. Self-powered photoelectrochemical (PEC) sensors, as an innovative technology, address the limitations inherent in conventional sensors, such as susceptibility to interference and inadequate signal response. Herein, we synthesized AgS/BiOCl as a photosensitive material, employing it as a light-harvesting substrate and a signal-transducing platform to develop a self-powered PEC sensor for the detection of CPF.
View Article and Find Full Text PDFJ Hazard Mater
December 2024
Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of Agricultural Functional Molecule Design and Utilization of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China. Electronic address:
Heavy metal contamination and pesticide residues pose significant threats to human health and ecosystems. Despite its broad applications, fluorescence imaging technology often struggles in complex ecological and biological environments due to disadvantages of background autofluorescence and low quantum yield. This study introduced a near-infrared (NIR) multifunctional "off-on-off" isophorone-based fluorescent bio-probe, DHB, characterized by a high fluorescence quantum yield (10.
View Article and Find Full Text PDFAnal Chem
January 2025
College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, P. R. China.
Neonicotinoid insecticides have been widely applied in modern agriculture to improve crop productivity, but their residues have adverse impacts on the environment and human health. Hence, to address these issues, a portable self-powered/colorimetric dual-mode sensing platform was developed for the simple, rapid, precise, and sensitive on-site detection of acetamiprid (ATM) residues in vegetables. In this case, a multifunctional bioconjugate with specific recognition capability, excellent enzyme-like activity, and loading capacity is the key to the sensing design.
View Article and Find Full Text PDFBiosens Bioelectron
December 2024
Biomedical Engineering, School of Medicine, The Chinese University of Hong Kong, Shenzhen, 518172, China; Juxintang (Chengdu) Biotechnology Co., Ltd., Chengdu, 641400, China. Electronic address:
This review examines the potential of aggregation-induced luminescence (AIE) materials in lateral flow assays (LFA) to enhance the sensitivity and specificity of a range of assay applications. LFA is a straightforward and effective paper-based platform for the rapid detection of target analytes in mixtures. Its simple design, low cost, and ease of operation are among the most attractive advantages of LFA.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!