Patulin (PAT) is a toxic secondary metabolite produced by sp. and sp., which acts as a contaminant of most apples and their products. The internationally recognized HACCP system is selected as the theoretical basis to more effectively reduce the PAT in apple juice concentrate (AJC). Through field investigation of apple juice concentrate (AJC) production enterprises, we collected 117 samples from 13 steps of AJC production, including whole apple, apple pulp, and apple juice. PAT contents were analyzed via high-performance liquid chromatography (HPLC) and compared with samples from the different production processes. The result demonstrated that the PAT content was significantly ( < 0.05) influenced by five processes, receipt of raw apples, sorting of raw apples, adsorption step, pasteurization, and aseptic filling. These processes were determined as the CCPs. Monitoring systems for maintaining CCPs within acceptable limits were established, and corrective actions were proposed in case a CCP was surpassed. Based on the above-identified CCPs, critical limits, and control methods (corrective actions), a HACCP plan related to the production process of AJC was established. This study provided important guidance for juice manufacturers wishing to effectively control the PAT content in their products.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9956176PMC
http://dx.doi.org/10.3390/foods12040786DOI Listing

Publication Analysis

Top Keywords

apple juice
16
juice concentrate
12
haccp system
8
concentrate ajc
8
ajc production
8
pat content
8
raw apples
8
corrective actions
8
apple
6
juice
5

Similar Publications

In this study, DL-phenylalanine modified with a multiwall carbon nanotube paste electrode is used as advanced electrochemical sensor for analysing of 0.1 mM caffeic acid (CFA) with simultaneous detection of riboflavin (RFN). The developed sensors include electrochemically polymerized DL-phenylalanine (DL-PA) modified multiwall carbon nanotube paste electrode [DL-PAMMCNTPE] and bare multiwall carbon nanotube paste electrode [BMCNTPE].

View Article and Find Full Text PDF

Isolation and characterization of quinoa antimicrobial peptides and its effect on the microbial diversity of fresh apple juice.

Food Chem

December 2024

Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China. Electronic address:

This study developed antimicrobial peptides (AMPs) from quinoa with high antibacterial activity and stability by mixed-bacteria fermentation. Furthermore, among 9 peptide fractions purified by membrane separation and chromatography, F1 could effectively inhibit the growth and propagation of bacterial microorganisms in apple juice. Subsequently, F1 identified LC-MS/MS as 95 peptides, molecular weights 494.

View Article and Find Full Text PDF

The lactic fermentation of fruit and vegetable juices by well-characterised probiotics remains relatively underexplored. We have investigated the stability and impact of KABP051 fermentation on orange, apple, and peach juices by microbiological, physicochemical, and sensory evaluation means. For each fruit juice, three different samples were analysed: original fruit juice without probiotic as blank (B), fruit juice inoculated with 10 CFU/mL of probiotic without fermentation (P), and fruit juice inoculated with 10 CFU/mL of probiotic and fermented at 37 °C for 24 h (PF).

View Article and Find Full Text PDF

Apples are among the most important fruits worldwide and the most consumed fruit in Germany. Due to higher energy and personnel costs, domestic apples are more expensive and thus offer an incentive for mixing with foreign goods. Moreover, imported apples have a higher carbon footprint, which is an obstacle regarding sales in times of climate change.

View Article and Find Full Text PDF

Occurrence of contamination and the reduction and transfer of Alternaria toxins in apples during processing.

Food Res Int

January 2025

Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, Hefei 230036, China; Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei 230036, China; School of Plant Protection, Anhui Province Key Laboratory of Integrated Pest Management on Crops, Anhui Agricultural University, Hefei 230036, China. Electronic address:

Article Synopsis
  • Alternaria spp. in apples can produce toxic secondary metabolites that threaten human and animal health, and this study explored the contamination levels and how these toxins are affected by processing methods.
  • Apples showed increased susceptibility to infection at 25 °C, producing six different toxins which did not spread beyond 4 cm from the infection site.
  • Processing methods like juicing and canning impacted toxin levels, with juice transfer rates lower than pomace, and most human exposure through apple products was well within recommended safety limits, suggesting a low dietary risk.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!