A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Distribution of the Age of Gossip in Networks. | LitMetric

Distribution of the Age of Gossip in Networks.

Entropy (Basel)

Wireless@VT, Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA 24061, USA.

Published: February 2023

We study a general setting of gossip networks in which a source node forwards its measurements (in the form of status updates) about some observed physical process to a set of monitoring nodes according to independent Poisson processes. Furthermore, each monitoring node sends status updates about its information status (about the process observed by the source) to the other monitoring nodes according to independent Poisson processes. We quantify the freshness of the information available at each monitoring node in terms of Age of Information (AoI). While this setting has been analyzed in a handful of prior works, the focus has been on characterizing the average (i.e., marginal first moment) of each age process. In contrast, we aim to develop methods that allow the characterization of higher-order marginal or joint moments of the age processes in this setting. In particular, we first use the stochastic hybrid system (SHS) framework to develop methods that allow the characterization of the stationary marginal and joint moment generating functions (MGFs) of age processes in the network. These methods are then applied to derive the stationary marginal and joint MGFs in three different topologies of gossip networks, with which we derive closed-form expressions for marginal or joint high-order statistics of age processes, such as the variance of each age process and the correlation coefficients between all possible pairwise combinations of age processes. Our analytical results demonstrate the importance of incorporating the higher-order moments of age processes in the implementation and optimization of age-aware gossip networks rather than just relying on their average values.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9955040PMC
http://dx.doi.org/10.3390/e25020364DOI Listing

Publication Analysis

Top Keywords

age processes
20
gossip networks
16
marginal joint
16
status updates
8
monitoring nodes
8
nodes independent
8
independent poisson
8
poisson processes
8
monitoring node
8
age
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!