Topological Data Analysis (TDA) is an approach to analyzing the shape of data using techniques from algebraic topology. The staple of TDA is Persistent Homology (PH). Recent years have seen a trend of combining PH and Graph Neural Networks (GNNs) in an end-to-end manner to capture topological features from graph data. Though effective, these methods are limited by the shortcomings of PH: incomplete topological information and irregular output format. Extended Persistent Homology (EPH), as a variant of PH, addresses these problems elegantly. In this paper, we propose a plug-in topological layer for GNNs, termed Topological Representation with Extended Persistent Homology (TREPH). Taking advantage of the uniformity of EPH, a novel aggregation mechanism is designed to collate topological features of different dimensions to the local positions determining their living processes. The proposed layer is provably differentiable and more expressive than PH-based representations, which in turn is strictly stronger than message-passing GNNs in expressive power. Experiments on real-world graph classification tasks demonstrate the competitiveness of TREPH compared with the state-of-the-art approaches.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9954936 | PMC |
http://dx.doi.org/10.3390/e25020331 | DOI Listing |
Biol Imaging
November 2024
Biological Image Analysis Unit, Institut Pasteur, Université Paris Cité, Paris, France.
We develop a novel method for image segmentation of 3D confocal microscopy images of emerging hematopoietic stem cells. The method is based on the theory of persistent homology and uses an optimal threshold to select the most persistent cycles in the persistence diagram. This enables the segmentation of the image's most contrasted and representative shapes.
View Article and Find Full Text PDFMetal-organic frameworks (MOFs) are porous, crystalline materials with high surface area, adjustable porosity, and structural tunability, making them ideal for diverse applications. However, traditional experimental and computational methods have limited scalability and interpretability, hindering effective exploration of MOF structure-property relationships. To address these challenges, we introduce, for the first time, a category-specific topological learning (CSTL), which combines algebraic topology with chemical insights for robust property prediction.
View Article and Find Full Text PDFNovel multiplexed spatial proteomics imaging platforms expose the spatial architecture of cells in the tumor microenvironment (TME). The diverse cell population in the TME, including its spatial context, has been shown to have important clinical implications, correlating with disease prognosis and treatment response. The accelerating implementation of spatial proteomic technologies motivates new statistical models to test if cell-level images associate with patient-level endpoints.
View Article and Find Full Text PDFMol Biol Evol
January 2025
Universite Claude Bernard Lyon 1, LBBE, UMR 5558, CNRS, VAS, Villeurbanne, F-69622, France.
Phylogenetic inference is mainly based on sequence analysis and requires reliable alignments. This can be challenging, especially when sequences are highly divergent. In this context, the use of three-dimensional protein structures is a promising alternative.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Electrical and Electronic Engineering, Bangladesh University of Engineering and Technology, Dhaka, 1205, Bangladesh.
Prediction and discovery of new materials with desired properties are at the forefront of quantum science and technology research. A major bottleneck in this field is the computational resources and time complexity related to finding new materials from ab initio calculations. In this work, an effective and robust deep learning-based model is proposed by incorporating persistent homology with graph neural network which offers an accuracy of and an F1 score of in classifying topological versus non-topological materials, outperforming the other state-of-the-art classifier models.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!