A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Surrogate-Assisted Hybrid Meta-Heuristic Algorithm with an Add-Point Strategy for a Wireless Sensor Network. | LitMetric

Surrogate-Assisted Hybrid Meta-Heuristic Algorithm with an Add-Point Strategy for a Wireless Sensor Network.

Entropy (Basel)

Graduate School of Information, Production and Systems, Waseda University, Kitakyushu 808-0135, Japan.

Published: February 2023

Meta-heuristic algorithms are widely used in complex problems that cannot be solved by traditional computing methods due to their powerful optimization capabilities. However, for high-complexity problems, the fitness function evaluation may take hours or even days to complete. The surrogate-assisted meta-heuristic algorithm effectively solves this kind of long solution time for the fitness function. Therefore, this paper proposes an efficient surrogate-assisted hybrid meta-heuristic algorithm by combining the surrogate-assisted model with gannet optimization algorithm (GOA) and the differential evolution (DE) algorithm, abbreviated as SAGD. We explicitly propose a new add-point strategy based on information from historical surrogate models, using information from historical surrogate models to allow the selection of better candidates for the evaluation of true fitness values and the local radial basis function (RBF) surrogate to model the landscape of the objective function. The control strategy selects two efficient meta-heuristic algorithms to predict the training model samples and perform updates. A generation-based optimal restart strategy is also incorporated in SAGD to select suitable samples to restart the meta-heuristic algorithm. We tested the SAGD algorithm using seven commonly used benchmark functions and the wireless sensor network (WSN) coverage problem. The results show that the SAGD algorithm performs well in solving expensive optimization problems.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9955869PMC
http://dx.doi.org/10.3390/e25020317DOI Listing

Publication Analysis

Top Keywords

meta-heuristic algorithm
16
surrogate-assisted hybrid
8
hybrid meta-heuristic
8
algorithm
8
add-point strategy
8
wireless sensor
8
sensor network
8
meta-heuristic algorithms
8
fitness function
8
historical surrogate
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!