A Novel Contrastive Self-Supervised Learning Framework for Solving Data Imbalance in Solder Joint Defect Detection.

Entropy (Basel)

College of Biological Sciences and Medical Engineering, Southeast University, Nanjing 210096, China.

Published: January 2023

Poor chip solder joints can severely affect the quality of the finished printed circuit boards (PCBs). Due to the diversity of solder joint defects and the scarcity of anomaly data, it is a challenging task to automatically and accurately detect all types of solder joint defects in the production process in real time. To address this issue, we propose a flexible framework based on contrastive self-supervised learning (CSSL). In this framework, we first design several special data augmentation approaches to generate abundant synthetic, not good (sNG) data from the normal solder joint data. Then, we develop a data filter network to distill the highest quality data from sNG data. Based on the proposed CSSL framework, a high-accuracy classifier can be obtained even when the available training data are very limited. Ablation experiments verify that the proposed method can effectively improve the ability of the classifier to learn normal solder joint (OK) features. Through comparative experiments, the classifier trained with the help of the proposed method can achieve an accuracy of 99.14% on the test set, which is better than other competitive methods. In addition, its reasoning time is less than 6 ms per chip image, which is in favor of the real-time defect detection of chip solder joints.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9954869PMC
http://dx.doi.org/10.3390/e25020268DOI Listing

Publication Analysis

Top Keywords

solder joint
20
data
9
contrastive self-supervised
8
self-supervised learning
8
defect detection
8
chip solder
8
solder joints
8
joint defects
8
cssl framework
8
sng data
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!