Vehicular ad hoc networks (VANETs) have recently drawn a large amount of attention because of their enormous potential in road safety improvement and traffic management as well as infotainment service support. As the standard of medium access control (MAC) and physical (PHY) layers for VANETs, IEEE 802.11p has been proposed for more than a decade. Though performance analyses of IEEE 802.11p MAC have been performed, the existing analytical methods still need to be improved. In this paper, to assess the saturated throughput and the average packet delay of IEEE 802.11p MAC in VANETs, a two-dimensional (2-D) Markov model is introduced by considering the capture effect under Nakagami- fading channel. Moreover, the closed-form expressions of successful transmission, collided transmission, saturated throughput, and average packet delay are carefully derived. Finally, the simulation results are demonstrated to verify the accuracy of the proposed analytical model, which also proves that this analytical model is more precise than the existing ones in terms of saturated throughput and average packet delay.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9954883PMC
http://dx.doi.org/10.3390/e25020218DOI Listing

Publication Analysis

Top Keywords

ieee 80211p
16
80211p mac
12
saturated throughput
12
throughput average
12
average packet
12
packet delay
12
considering capture
8
capture nakagami-
8
nakagami- fading
8
fading channel
8

Similar Publications

Lightweight Retinal Layer Segmentation With Global Reasoning.

IEEE Trans Instrum Meas

May 2024

School of Mechanical Engineering, Shandong University, Jinan 250061, Shandong, China.

Automatic retinal layer segmentation with medical images, such as optical coherence tomography (OCT) images, serves as an important tool for diagnosing ophthalmic diseases. However, it is challenging to achieve accurate segmentation due to low contrast and blood flow noises presented in the images. In addition, the algorithm should be light-weight to be deployed for practical clinical applications.

View Article and Find Full Text PDF

MITIGATING OVER-SATURATED FLUORESCENCE IMAGES THROUGH A SEMI-SUPERVISED GENERATIVE ADVERSARIAL NETWORK.

Proc IEEE Int Symp Biomed Imaging

May 2024

Department of Electrical and Computer Engineering, Nashville, TN, USA.

Multiplex immunofluorescence (MxIF) imaging is a critical tool in biomedical research, offering detailed insights into cell composition and spatial context. As an example, DAPI staining identifies cell nuclei, while CD20 staining helps segment cell membranes in MxIF. However, a persistent challenge in MxIF is saturation artifacts, which hinder single-cell level analysis in areas with over-saturated pixels.

View Article and Find Full Text PDF

Objective: The application of artificial intelligence (AI)-based clinical decision support systems (CDSS) in the healthcare domain is still limited. End-users' difficulty understanding how the outputs of opaque black AI models are generated contributes to this. It is still unknown which explanations are best presented to end users and how to design the interfaces they are presented in (explanation user interface, XUI).

View Article and Find Full Text PDF

Exergames, which blend physical activity with digital gaming, are increasingly recognized for their potential to boost user engagement in exercise. The user perception of these games plays a critical role in sustaining this engagement. Therefore, understanding and effectively assessing user experience (UX) in exergames is crucial to maximizing their appeal and effectiveness.

View Article and Find Full Text PDF

Web Real-Time Communications-Based Unmanned-Aerial-Vehicle-Borne Internet of Things and Stringent Time Sensitivity: A Case Study.

Sensors (Basel)

January 2025

Institute of Telecommunications, Faculty of Computer Science, Electronics and Telecommunications, AGH University of Krakow, Al. Mickiewicza 30, 30-059 Krakow, Poland.

The currently observed development of time-sensitive applications also affects wireless communication with the IoT carried by UAVs. Although research on wireless low-latency networks has matured, there are still issues to solve at the transport layer. Since there is a general agreement that classical transport solutions are not able to achieve end-to-end delays in the single-digit millisecond range, in this paper, the use of WebRTC is proposed as a potential solution to this problem.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!