Heritable thoracic aortic disease (HTAD) is a term used to define a large group of disorders characterized by the occurrence of aortic events, mainly represented by aneurysm or dissection. These events generally involve the ascending aorta, although the involvement of other districts of the aorta or peripheral vessels may occur. HTAD can be classified as non-syndromic if the disorder is limited to the aorta, and syndromic when associated with extra-aortic features. About 20-25% of patients with non-syndromic HTAD exhibit a family history of aortic disease. Thus, a careful clinical evaluation of the proband and the first-degree family members is required to differentiate familial and sporadic cases. Genetic testing is essential since it allows confirmation of the etiological diagnosis of HTAD (particularly in patients with a significant family history) and may guide family screening. In addition, genetic diagnosis significantly impacts patients' management since the different conditions significantly differ with respect to natural history and treatment strategies. The prognosis in all HTADs is determined by the progressive dilation of the aorta, potentially leading to acute aortic events, such as dissection or rupture. Moreover, the prognosis varies according to the underlying genetic mutations. This review aims to describe the clinical characteristics and natural history of the most common HTADs, with particular emphasis on the role of genetic testing in risk stratification and management.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9955043 | PMC |
http://dx.doi.org/10.3390/diagnostics13040772 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Department of Biology, University of Kentucky, Lexington, KY 40508.
Identifying why complex tissue regeneration is present or absent in specific vertebrate lineages has remained elusive. One also wonders whether the isolated examples where regeneration is observed represent cases of convergent evolution or are instead the product of phylogenetic inertia from a common ancestral program. Testing alternative hypotheses to identify genetic regulation, cell states, and tissue physiology that explain how regenerative healing emerges in some species requires sampling multiple species among which there is variation in regenerative ability across a phylogenetic framework.
View Article and Find Full Text PDFPLoS Genet
January 2025
Department of Human Genetics, The University of Chicago, Chicago, Illinois, United States of America.
Understanding the genetic regulatory mechanisms of gene expression is an ongoing challenge. Genetic variants that are associated with expression levels are readily identified when they are proximal to the gene (i.e.
View Article and Find Full Text PDFMedicine (Baltimore)
January 2025
Department of Endoscopy, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China.
This study enrolled 10 patients diagnosed with premalignant lesions and early-stage gastric cardia adenocarcinoma (GCA), confirmed through endoscopic examination. These patients were subjected to next-generation sequencing (NGS) using a customized 1123-gene panel to identify genetic alterations and signaling pathways. The results were compared to stage IIB to IV GCA samples from the cancer genome atlas (TCGA) and a cohort of Hong Kong patients.
View Article and Find Full Text PDFMedicine (Baltimore)
January 2025
Department of Pathology, Deyang Peoples' Hospital, Deyang, Sichuan Province, China.
Rationale: Ependymomas are commonly prevalent intramedullary neoplasms in adults, with hardly any cases of exophytic extramedullary ependymoma being reported. Meningiomas, on the contrary, are one of the most common intradural extramedullary (IDEM) tumors. However, the occurrence of both IDEM tumors simultaneously is extremely rare.
View Article and Find Full Text PDFMedicine (Baltimore)
January 2025
Epilepsy Center, Children's Hospital Affiliated to Shandong University, Jinan, China.
Rationale: Developmental and epileptic encephalopathy (DEE) defines a group of severe and heterogeneous neurodevelopmental disorders. The voltage-gated potassium channel subfamily 2 voltage-gated potassium channel α subunit encoded by the KCNB1 gene is essential for neuronal excitability. Previous studies have shown that KCNB1 variants can cause DEE.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!