This study aims to use a deep learning method to develop a signature extract from preoperative magnetic resonance imaging (MRI) and to evaluate its ability as a non-invasive recurrence risk prognostic marker in patients with advanced high-grade serous ovarian cancer (HGSOC). Our study comprises a total of 185 patients with pathologically confirmed HGSOC. A total of 185 patients were randomly assigned in a 5:3:2 ratio to a training cohort (n = 92), validation cohort 1 (n = 56), and validation cohort 2 (n = 37). We built a new deep learning network from 3839 preoperative MRI images (T2-weighted images and diffusion-weighted images) to extract HGSOC prognostic indicators. Following that, a fusion model including clinical and deep learning features is developed to predict patients' individual recurrence risk and 3-year recurrence likelihood. In the two validation cohorts, the consistency index of the fusion model was higher than both the deep learning model and the clinical feature model (0.752, 0.813 vs. 0.625, 0.600 vs. 0.505, 0.501). Among the three models, the fusion model had a higher AUC than either the deep learning model or the clinical model in validation cohorts 1 or 2 (AUC = was 0.986, 0.961 vs. 0.706, 0.676/0.506, 0.506). Using the DeLong method, the difference between them was statistically significant ( < 0.05). The Kaplan-Meier analysis distinguished two patient groups with high and low recurrence risk ( = 0.0008 and 0.0035, respectively). Deep learning may be a low-cost, non-invasive method for predicting risk for advanced HGSOC recurrence. Deep learning based on multi-sequence MRI serves as a prognostic biomarker for advanced HGSOC, which provides a preoperative model for predicting recurrence in HGSOC. Additionally, using the fusion model as a new prognostic analysis means that can use MRI data can be used without the need to follow-up the prognostic biomarker.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9954966 | PMC |
http://dx.doi.org/10.3390/diagnostics13040748 | DOI Listing |
MAGMA
January 2025
Aix Marseille Univ, CNRS, CRMBM, Marseille, France.
Objective: Segmentation of individual thigh muscles in MRI images is essential for monitoring neuromuscular diseases and quantifying relevant biomarkers such as fat fraction (FF). Deep learning approaches such as U-Net have demonstrated effectiveness in this field. However, the impact of reducing neural network complexity remains unexplored in the FF quantification in individual muscles.
View Article and Find Full Text PDFJ Neural Transm (Vienna)
January 2025
Postgraduate Program in Physical Therapy (PPGFT), Department of Physical Therapy (DFisio), University of São Carlos (UFSCar), Washington Luis Road, Km 235, São Carlos, São Paulo, 13565-905, Brazil.
The cerebellum is a structure in the suprasegmental nervous system classically known for its involvement in motor functions such as motor planning, coordination, and motor learning. However, with scientific advances, other functions of the cerebellum, such as cognitive, emotional, and autonomic processing, have been discovered. Currently, there is a body of evidence demonstrating the involvement of the cerebellum in nociception and pain processing.
View Article and Find Full Text PDFActa Otolaryngol
January 2025
Department of Otorhinolaryngology, Institute of Science Tokyo, Tokyo, Japan.
Background: Recent advances in artificial intelligence have facilitated the automatic diagnosis of middle ear diseases using endoscopic tympanic membrane imaging.
Aim: We aimed to develop an automated diagnostic system for middle ear diseases by applying deep learning techniques to tympanic membrane images obtained during routine clinical practice.
Material And Methods: To augment the training dataset, we explored the use of generative adversarial networks (GANs) to produce high-quality synthetic tympanic images that were subsequently added to the training data.
Clin Transl Sci
January 2025
Global Biometrics and Data Management, Pfizer Research and Development, New York, New York, USA.
The pharmaceutical industry constantly strives to improve drug development processes to reduce costs, increase efficiencies, and enhance therapeutic outcomes for patients. Model-Informed Drug Development (MIDD) uses mathematical models to simulate intricate processes involved in drug absorption, distribution, metabolism, and excretion, as well as pharmacokinetics and pharmacodynamics. Artificial intelligence (AI), encompassing techniques such as machine learning, deep learning, and Generative AI, offers powerful tools and algorithms to efficiently identify meaningful patterns, correlations, and drug-target interactions from big data, enabling more accurate predictions and novel hypothesis generation.
View Article and Find Full Text PDFSmall Methods
January 2025
Dept. Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, CB3 0AS, UK.
The integration of Machine Learning (ML) with super-resolution microscopy represents a transformative advancement in biomedical research. Recent advances in ML, particularly deep learning (DL), have significantly enhanced image processing tasks, such as denoising and reconstruction. This review explores the growing potential of automation in super-resolution microscopy, focusing on how DL can enable autonomous imaging tasks.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!