Small bowel polyps exhibit variations related to color, shape, morphology, texture, and size, as well as to the presence of artifacts, irregular polyp borders, and the low illumination condition inside the gastrointestinal GI tract. Recently, researchers developed many highly accurate polyp detection models based on one-stage or two-stage object detector algorithms for wireless capsule endoscopy (WCE) and colonoscopy images. However, their implementation requires a high computational power and memory resources, thus sacrificing speed for an improvement in precision. Although the single-shot multibox detector (SSD) proves its effectiveness in many medical imaging applications, its weak detection ability for small polyp regions persists due to the lack of information complementary between features of low- and high-level layers. The aim is to consecutively reuse feature maps between layers of the original SSD network. In this paper, we propose an innovative SSD model based on a redesigned version of a dense convolutional network (DenseNet) which emphasizes multiscale pyramidal feature maps interdependence called DC-SSDNet (densely connected single-shot multibox detector). The original backbone network VGG-16 of the SSD is replaced with a modified version of DenseNet. The DenseNet-46 front stem is improved to extract highly typical characteristics and contextual information, which improves the model's feature extraction ability. The DC-SSDNet architecture compresses unnecessary convolution layers of each dense block to reduce the CNN model complexity. Experimental results showed a remarkable improvement in the proposed DC-SSDNet to detect small polyp regions achieving an mAP of 93.96%, F1-score of 90.7%, and requiring less computational time.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9955440 | PMC |
http://dx.doi.org/10.3390/diagnostics13040733 | DOI Listing |
IEEE Trans Ultrason Ferroelectr Freq Control
November 2024
Front Neurosci
October 2024
School of Advanced Manufacturing, Nanchang University, Nanchang, China.
Sci Rep
October 2024
Department of Electrical Engineering, Marwadi University, Rajkot, 360003, Gujarat, India.
Rapid and reliable detection of human survivors trapped under debris is crucial for effective post-earthquake search and rescue (SAR) operations. This paper presents a novel approach to survivor detection using a snake robot equipped with deep learning (DL) based object identification algorithms. We evaluated the performance of three main algorithms: Faster R-CNN, Single Shot MultiBox Detector (SSD), and You Only Look Once (YOLO).
View Article and Find Full Text PDFAnn Biomed Eng
September 2024
Division of Electrical and Computer Engineering, College of Engineering, Louisiana State University, Baton Rouge, LA, 70803, USA.
Tooth cracks, one of the most common dental diseases, can result in the tooth falling apart without prompt treatment; dentists also have difficulty locating cracks, even with X-ray imaging. Indocyanine green (ICG) assisted near-infrared fluorescence (NIRF) dental imaging technique can solve this problem due to the deep penetration of NIR light and the excellent fluorescence characteristics of ICG. This study extracted 593 human cracked tooth images and 601 non-cracked tooth images from NIR imaging videos.
View Article and Find Full Text PDFAm J Pathol
December 2024
Department of Pathology, The First Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China. Electronic address:
In breast carcinoma, invasive ductal carcinoma (IDC) is the most common histopathologic subtype, and ductal carcinoma in situ (DCIS) is a precursor of IDC. These two often occur concomitantly. The immunohistochemical staining of estrogen receptor (ER)/progesterone receptor (PR) in IDC/DCIS on histopathologic whole slide images (WSIs) can predict the prognosis of patients.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!