The cortical response to transcranial magnetic stimulation (TMS) has notable inter-trial variability. One source of this variability can be the influence of the phase and power of pre-stimulus neuronal oscillations on single-trial TMS responses. Here, we investigate the effect of brain oscillatory activity on TMS response in 49 distinct healthy participants (64 datasets) who had received single-pulse TMS over the left dorsolateral prefrontal cortex. Across all frequency bands of theta (4-7 Hz), alpha (8-13 Hz), and beta (14-30 Hz), there was no significant effect of pre-TMS phase on single-trial cortical evoked activity. After high-powered oscillations, whether followed by a TMS pulse or not, the subsequent activity was larger than after low-powered oscillations. We further defined a measure, , to enable us to investigate brain responses to the TMS pulse disentangled from the power of ongoing (spontaneous) oscillations. The was significantly different from zero (meaningful added effect of TMS) only in theta and beta bands. Our results suggest that brain state prior to stimulation might play some role in shaping the subsequent TMS-EEG response. Specifically, our findings indicate that the power of ongoing oscillatory activity, but not phase, can influence brain responses to TMS. Aligning the TMS pulse with specific power thresholds of an EEG signal might therefore reduce variability in neurophysiological measurements and also has the potential to facilitate more robust therapeutic effects of stimulation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9953459 | PMC |
http://dx.doi.org/10.3390/bios13020220 | DOI Listing |
Arch Phys Med Rehabil
December 2024
Department of Rehabilitation, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China. Electronic address:
Objective: To assess the available evidence of non-invasive or minimally invasive neuromodulation therapies in improving urodynamic outcomes, voiding diaries, and quality of life in patients with neurogenic lower urinary tract dysfunction (NLUTD) after spinal cord injury (SCI).
Data Sources: A comprehensive search of 10 databases from inception until August 30, 2023 was conducted.
Study Selection: Randomized controlled trials (RCTs) assessing the effects of conventional treatment (CT) and CT combined with sham stimulation (SS), transcranial magnetic stimulation (TMS), sacral nerve magnetic stimulation (SNMS), TMS+SNMS, sacral pulsed electromagnetic field therapy (SPEMFT), sacral transcutaneous electrical nerve stimulation (STENS), sacral dermatomal transcutaneous electrical nerve stimulation (SDTENS), bladder & sacral transcutaneous electrical nerve stimulation (B&STENS), transcutaneous tibial nerve stimulation (TTNS), transcutaneous electrical acupoint stimulation (TEAS), pelvic floor electrical stimulation (PFES), or pelvic floor biofeedback therapy (PFBFBT) on postvoid residual volume (PVR), maximum cystometric capacity (MCC), number of voids per 24 h (V24), mean urine volume per micturition, (MUV), maximum urinary flow rate (Qmax), maximum detrusor pressure (MDP), maximum voiding volume (MVV), number of leakages per 24 h (L24), lower urinary tract symptoms (LUTS) score, and spinal cord injury-quality of life (SCI-QoL)score in patients with NLUTD after SCI were included.
Sci Rep
December 2024
BioMag Laboratory, HUS Diagnostic Center, Helsinki University Hospital, University of Helsinki and Aalto University School of Science, Helsinki, Finland.
J Neurophysiol
December 2024
Spinal Cord Injury Research Centre, Neuroscience Research Australia, Randwick, 2031 NSW, Australia.
Introduction: Lumbar transcutaneous spinal cord stimulation (TSS) evokes synchronized muscle responses, termed spinally evoked motor response (sEMR). Whether the structures TSS activates to evoke sEMRs differ when TSS intensity and waveform are varied is unknown.
Methods: In 15 participants (9F:6M), sEMRs were evoked by TSS over L1-L3 (at sEMR threshold and suprathreshold intensities) using conventional (one 400-µs biphasic pulse) or high-frequency burst (ten 40-µs biphasic pulses at 10 kHz) stimulus waveforms in vastus medialis (VM), tibialis anterior (TA) and medial gastrocnemius (MG) muscles.
Front Neurosci
December 2024
Memory and Brain Wellness Center, University of Washington, Seattle, WA, United States.
Background: Alzheimer's disease (AD) is characterized by cerebral amyloid plaques and neurofibrillary tangles and disruption of large-scale brain networks (LSBNs). Transcranial magnetic stimulation (TMS) has emerged as a potential non-invasive AD treatment that may serve as an adjunct therapy with FDA approved medications.
Methods: We conducted a 10-subject open label, single site study evaluating the effect of functional connectivity-resting state functional MRI guided-approach to TMS targeting with dysfunctional LSBNs in subjects with biomarker-confirmed early-stage AD (https://clinicaltrials.
Brain Stimul
December 2024
Movement and Cognitive Rehabilitation Science Program, Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, TX, USA. Electronic address:
Background: Transcranial magnetic stimulation (TMS) interventions could feasibly treat stroke-related motor impairments, but their effects are highly variable. Brain state-dependent TMS approaches are a promising solution to this problem, but inter-individual variation in lesion location and oscillatory dynamics can make translating them to the poststroke brain challenging. Personalized brain state-dependent approaches specifically designed to address these challenges are needed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!