Plasma membrane mimetics can potentially play a vital role in drug discovery and immunotherapy owing to the versatility to assemble facilely cellular membranes on surfaces and/or nanoparticles, allowing for direct assessment of drug/membrane interactions. Recently, bacterial membranes (BMs) have found widespread applications in biomedical research as antibiotic resistance is on the rise, and bacteria-associated infections have become one of the major causes of death worldwide. Over the last decade, BM research has greatly benefited from parallel advancements in nanotechnology and bioelectronics, resulting in multifaceted systems for a variety of sensing and drug discovery applications. As such, BMs coated on electroactive surfaces are a particularly promising label-free platform to investigate interfacial phenomena, as well as interactions with drugs at the first point of contact: the bacterial membrane. Another common approach suggests the use of lipid-coated nanoparticles as a drug carrier system for therapies for infectious diseases and cancer. Herein, we discuss emerging platforms that make use of BMs for biosensing, bioimaging, drug delivery/discovery, and immunotherapy, focusing on bacterial infections and cancer. Further, we detail the synthesis and characteristics of BMs, followed by various models for utilizing them in biomedical applications. The key research areas required to augment the characteristics of bacterial membranes to facilitate wider applicability are also touched upon. Overall, this review provides an interdisciplinary approach to exploit the potential of BMs and current emerging technologies to generate novel solutions to unmet clinical needs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9953710 | PMC |
http://dx.doi.org/10.3390/bios13020189 | DOI Listing |
Sci Rep
December 2024
Laboratory of Medical Biology, Faculty of Biotechnology, University of Wrocław, 14A F. Joliot-Curie St., 50-383, Wrocław, Poland.
Iron and heme are essential nutrients for all branches of life. Pathogenic members of the Bacteroidota phylum, including Porphyromonas gingivalis, do not synthesize heme and rely on host hemoproteins for heme as a source of iron and protoporphyrin IX. P.
View Article and Find Full Text PDFSci Rep
December 2024
Population Health and Host Pathogen Interactions Programs, Texas Biomedical Research Institute, San Antonio, TX, USA.
In recent decades, drug resistant (DR) strains of Mycobacterium tuberculosis (M.tb), the cause of tuberculosis (TB), have emerged that threaten public health. Although M.
View Article and Find Full Text PDFSci Rep
December 2024
Université Paris-Saclay, UVSQ, LGBC, 78000, Versailles, France.
Mycobacterium abscessus (Mabs), an intracellular and opportunistic pathogen, is considered the most pathogenic fast-growing mycobacterium, and causes severe pulmonary infections in patients with cystic fibrosis. While bacterial factors contributing to its pathogenicity are well studied, the host factors and responses that worsen Mabs infection are not fully understood. Here, we report that Mabs systemic infection alters Drosophila melanogaster intestinal homeostasis.
View Article and Find Full Text PDFSci Rep
December 2024
Pornchai Matangkasombut Center for Microbial Genomics, Faculty of Science, Mahidol University, Rama 6 Road, Bangkok, 10400, Thailand.
Mycobacterium tuberculosis Complex (MTBC), the etiological agent of tuberculosis (TB), demonstrates considerable genotypic diversity with distinct geographic distributions and variable virulence profiles. The pe-ppe gene family is especially noteworthy for its extensive variability and roles in host immune response modulation and virulence enhancement. We sequenced an Mtb genotype L2.
View Article and Find Full Text PDFBiomaterials
December 2024
School of Life Sciences, Faculty of Medicine, Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, Tianjin University, Tianjin, 300072, China.
In the immunosuppressive tumor microenvironment (TME), tumor-associated macrophages (TAMs) predominantly exhibit an immunosuppressive M2 phenotype, which facilitates tumor proliferation and metastasis. Although current strategies aimed at reprogramming TAMs hold promise, their sustainability and effectiveness are limited due to repeated injections. Herein, a bacterial therapy platform containing two engineered strains was developed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!