Cognitive impairments are closely related to synaptic loss in Alzheimer's disease (AD). Functional changes in synaptic contacts are reflected in dendritic spine morphology. Visualization of neurons for morphological studies in vivo is complicated by the fixed brain slice staining or expensive adeno-associated virus injections. We created a transgenic 5xFAD-M line of mice with AD-associated mutations and expressed GFP protein in single neurons of the brain. This mouse model of AD is a useful tool for the simplified visualization of the hippocampal neurons' morphology in vivo without additional staining manipulations. The progressive elimination of mushroom spines was demonstrated in 5xFAD-M mice between 4 and 5 months of age. Five-month-old 5xFAD-M male and female mice showed change both in the total density and the mushroom spines number compared to sex-matched control. We conclude 5xFAD-M mice can be a useful AD model for studying the mechanisms of synaptic pathology under neurodegenerative conditions and evaluating the effects of potential therapeutic agents on spine morphology as crucial aspect of memory loss in AD.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9954381PMC
http://dx.doi.org/10.3390/brainsci13020307DOI Listing

Publication Analysis

Top Keywords

5xfad-m mice
16
spine morphology
12
transgenic 5xfad-m
8
dendritic spine
8
alzheimer's disease
8
mushroom spines
8
mice
5
mice dendritic
4
morphology
4
morphology analysis
4

Similar Publications

Cognitive impairments are closely related to synaptic loss in Alzheimer's disease (AD). Functional changes in synaptic contacts are reflected in dendritic spine morphology. Visualization of neurons for morphological studies in vivo is complicated by the fixed brain slice staining or expensive adeno-associated virus injections.

View Article and Find Full Text PDF

KED and EDR peptides prevent dendritic spines loss in amyloid synaptotoxicity in in vitro model of Alzheimer's disease (AD). The objective of this paper was to study epigenetic mechanisms of EDR and KED peptides' neuroprotective effects on neuroplasticity and dendritic spine morphology in an AD mouse model. Daily intraperitoneal administration of the KED peptide in 5xFAD mice from 2 to 4 months of age at a concentration of 400 μg/kg tended to increase neuroplasticity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!