In today's high-order health examination, imaging examination accounts for a large proportion. Computed tomography (CT), which can detect the whole body, uses X-rays to penetrate the human body to obtain images. Its presentation is a high-resolution black-and-white image composed of gray scales. It is expected to assist doctors in making judgments through deep learning based on the image recognition technology of artificial intelligence. It used CT images to identify the bladder and lesions and then segmented them in the images. The images can achieve high accuracy without using a developer. In this study, the U-Net neural network, commonly used in the medical field, was used to extend the encoder position in combination with the ResBlock in ResNet and the Dense Block in DenseNet, so that the training could maintain the training parameters while reducing the overall identification operation time. The decoder could be used in combination with Attention Gates to suppress the irrelevant areas of the image while paying attention to significant features. Combined with the above algorithm, we proposed a Residual-Dense Attention (RDA) U-Net model, which was used to identify organs and lesions from CT images of abdominal scans. The accuracy () of using this model for the bladder and its lesions was 96% and 93%, respectively. The values of Intersection over Union () were 0.9505 and 0.8024, respectively. Average Hausdorff distance () was as low as 0.02 and 0.12, respectively, and the overall training time was reduced by up to 44% compared with other convolution neural networks.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9954660 | PMC |
http://dx.doi.org/10.3390/cancers15041343 | DOI Listing |
Acta Radiol
January 2025
Department of Medical Imaging, Dalin Tzu-Chi Hospital, Chiayi, Taiwan.
Background: The wide variability in thresholds on computed tomography (CT) perfusion parametric maps has led to controversy in the stroke imaging community about the most accurate measurement of core infarction.
Purpose: To investigate the feasibility of using U-Net to perform infarct core segmentation in CT perfusion imaging.
Material And Methods: CT perfusion parametric maps were the input of U-Net, while the ground truth segmentation was determined based on diffusion-weighted imaging (DWI).
Clin Implant Dent Relat Res
February 2025
SEMRUK Technology Inc., Cumhuriyet Teknokent, Sivas, Turkiye.
Objectives: This study aimed to develop an artificial intelligence (AI)-based deep learning model for the detection and numbering of dental implants in panoramic radiographs. The novelty of this model lies in its ability to both detect and number implants, offering improvements in clinical decision support for dental implantology.
Materials And Methods: A retrospective dataset of 32 585 panoramic radiographs, collected from patients at Sivas Cumhuriyet University between 2014 and 2024, was utilized.
Bioinform Adv
November 2024
Institute of Biochemistry and Molecular Medicine, University of Bern, Bern 3012, Switzerland.
Summary: Protein structure prediction aims to infer a protein's three-dimensional (3D) structure from its amino acid sequence. Protein structure is pivotal for elucidating protein functions, interactions, and driving biotechnological innovation. The deep learning model AlphaFold2, has revolutionized this field by leveraging phylogenetic information from multiple sequence alignments (MSAs) to achieve remarkable accuracy in protein structure prediction.
View Article and Find Full Text PDFEur Heart J Digit Health
January 2025
Department of Cardiovascular Surgery of Zhongshan Hospital, Fudan University, Shanghai 200032, China.
Aims: Accurate heart function estimation is vital for detecting and monitoring cardiovascular diseases. While two-dimensional echocardiography (2DE) is widely accessible and used, it requires specialized training, is prone to inter-observer variability, and lacks comprehensive three-dimensional (3D) information. We introduce CardiacField, a computational echocardiography system using a 2DE probe for precise, automated left ventricular (LV) and right ventricular (RV) ejection fraction (EF) estimations, which is especially easy to use for non-cardiovascular healthcare practitioners.
View Article and Find Full Text PDFEur Heart J Digit Health
January 2025
School of Life Course & Population Sciences, King's College London, SE1 1UL London, UK.
Cardiovascular disease (CVD) remains a major cause of mortality in the UK, prompting the need for improved risk predictive models for primary prevention. Machine learning (ML) models utilizing electronic health records (EHRs) offer potential enhancements over traditional risk scores like QRISK3 and ASCVD. To systematically evaluate and compare the efficacy of ML models against conventional CVD risk prediction algorithms using EHR data for medium to long-term (5-10 years) CVD risk prediction.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!