Primary central nervous system lymphoma is a rare but aggressive brain malignancy. It is associated with poor prognosis even with the current standard of care. The aim of this study was to evaluate the effect and tolerability of blood-brain barrier disruption treatment combined with high-dose treatment with autologous stem cell transplantation as consolidation on primary central nervous system lymphoma patients. We performed a prospective phase II study for 25 patients with previously untreated primary central nervous system lymphoma. The blood-brain barrier disruption treatment was initiated 3-4 weeks after the MATRix regimen using the previously optimized therapy protocol. Briefly, each chemotherapy cycle included two subsequent intra-arterial blood-brain barrier disruption treatments on days 1 and 2 via either one of the internal carotid arteries or vertebral arteries. Patients received the therapy in 3-week intervals. The treatment was continued for two more courses after achieving a maximal radiological response to the maximum of six courses. The complete treatment response was observed in 88.0% of the patients. At the median follow-up time of 30 months, median progression-free and overall survivals were not reached. The 2-year overall and progression-free survival rates were 67.1% and 70.3%, respectively. Blood-brain barrier disruption treatment is a promising option for primary central nervous system lymphoma with an acceptable toxicity profile.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9953868PMC
http://dx.doi.org/10.3390/cancers15041341DOI Listing

Publication Analysis

Top Keywords

blood-brain barrier
20
barrier disruption
20
primary central
20
central nervous
20
nervous system
20
system lymphoma
20
disruption treatment
12
phase study
8
treatment
6
blood-brain
5

Similar Publications

In a series of studies on blood-brain barrier transportable peptides, a soybean dipeptide, Tyr-Pro, penetrated the mouse brain parenchyma after oral intake and improved short and long memory impairment in acute Alzheimer's model mice. Here, we aimed to clarify the anti-dementia effects of this peptide administered to SAMP8 mice prior to dementia onset. At the end of the 25-week protocol in 16-week-old SAMP8 mice, Tyr-Pro (10 mg/kg/day) significantly improved the reduced spatial learning ability compared with that in the control and amino acid (Tyr + Pro) groups as indicated by the results of Morris water maze tests conducted for five consecutive days.

View Article and Find Full Text PDF

NET formation-mediated in situ protein delivery to the inflamed central nervous system.

Nat Commun

December 2024

College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea.

Delivering protein drugs to the central nervous system (CNS) is challenging due to the blood-brain and blood-spinal cord barrier. Here we show that neutrophils, which naturally migrate through these barriers to inflamed CNS sites and release neutrophil extracellular traps (NETs), can be leveraged for therapeutic delivery. Tannic acid nanoparticles tethered with anti-Ly6G antibody and interferon-β (aLy6G-IFNβ@TLP) are constructed for targeted neutrophil delivery.

View Article and Find Full Text PDF

Owing to their attractive antitumor effects, aminated fullerene derivatives are emerging as promising therapeutic drugs for cancer. However, their in vivo applications are severely limited due to cation toxicity. To address this problem, human heavy chain ferritin (HFn), possessing natural biocompatibility is utilized, to develop a novel supramolecular assembly drug delivery system.

View Article and Find Full Text PDF

Hypoxia triggers blood-brain barrier disruption and a strong microglial activation response around leaky cerebral blood vessels. These events are greatly amplified in aged mice which is translationally relevant because aged patients are far more likely to suffer hypoxic events from heart or lung disease, and because of the pathogenic role of blood-brain barrier breakdown in vascular dementia. Importantly, it is currently unclear if disrupted cerebral blood vessels spontaneously repair and if they do, whether surrounding microglia deactivates.

View Article and Find Full Text PDF

Everolimus in pituitary tumor: a review of preclinical and clinical evidence.

Front Endocrinol (Lausanne)

December 2024

Department of Endocrinology and Metabolism, Lanzhou University Second Hospital, Lanzhou, Gansu, China.

Although pituitary tumors (PTs) are mostly benign, some PTs are characterized by low surgical resection rates, high recurrence rates, and poor response to conventional treatments and profoundly affect patients' quality of life. Everolimus (EVE) is the only FDA-approved mTOR inhibitor, which can be used for oral treatment. It effectively inhibits tumor cell proliferation and angiogenesis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!