HDAC8 Deacetylates HIF-1α and Enhances Its Protein Stability to Promote Tumor Growth and Migration in Melanoma.

Cancers (Basel)

College of Pharmacy Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon 21983, Republic of Korea.

Published: February 2023

Melanoma is the most lethal type of skin cancer, and it causes more than 55,000 deaths annually. Although regional melanoma can be surgically removed, once melanoma metastasizes to other regions of the body, the survival rate drops dramatically. The current treatment options are chemotherapy, immunotherapy, and targeted therapy. However, the low response rate and the development of resistance necessitate the search for a novel therapeutic target in melanoma. Hypoxia-inducible factor-1 α (HIF-1α) is overexpressed in melanoma and plays a crucial role in driving malignant transformation in cancer cells. Here, we identified that histone deacetylase 8 (HDAC8) enhances the protein stability of HIF-1α. HDAC8 directly binds to and deacetylates HIF-1α, thereby promoting its protein stability. This, in turn, upregulates the transcriptional activity of HIF-1α and promotes the expressions of its target genes, such as hexokinase 2 (HK2) and glucose transporter 1 (GLUT1). The inhibition of HDAC8 suppresses the proliferation and metastasis of melanoma cells. Furthermore, is correlated with expression and poor prognosis in samples from patients with melanoma. These findings uncover a novel epigenetic mechanism that maintains HIF-1α stability and implicates the potential of HDAC8 inhibitors for melanoma therapy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9953989PMC
http://dx.doi.org/10.3390/cancers15041123DOI Listing

Publication Analysis

Top Keywords

protein stability
12
melanoma
9
deacetylates hif-1α
8
enhances protein
8
hif-1α
6
hdac8
5
hdac8 deacetylates
4
hif-1α enhances
4
stability
4
stability promote
4

Similar Publications

Insulin-like growth factor II mRNA-binding proteins (IGF2BPs), a family of RNA-binding proteins, are pivotal in regulating RNA dynamics, encompassing processes such as localization, metabolism, stability, and translation through the formation of ribonucleoprotein complexes. First identified in 1999 for their affinity to insulin-like growth factor II mRNA, IGF2BPs have been implicated in promoting tumor malignancy behaviors, including proliferation, metastasis, and the maintenance of stemness, which are associated with unfavorable outcomes in various cancers. Additionally, non-coding RNAs (ncRNAs), particularly long non-coding RNAs, circular RNAs, and microRNAs, play critical roles in cancer progression through intricate protein-RNA interactions.

View Article and Find Full Text PDF

A highly sensitive and rapid LC-MS/MS method was developed and validated for the quantification of dexamethasone in rat plasma and brain tissue. Protein precipitation method was used for sample preparation. The separation of dexamethasone and the IS (labetalol) was achieved on an Atlantis dC column using an isocratic mobile phase (10 mM ammonium formate and acetonitrile, 25/75, v/v) delivered at 0.

View Article and Find Full Text PDF

Loss-of-function SLC25A20 mutation causes carnitine-acylcarnitine translocase deficiency by reducing SLC25A20 protein stability.

Gene

December 2024

Department of Medical Genetics/Experimental Education/Administration Center, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Guangzhou 510515, China; Department of Fetal Medicine and Prenatal Diagnosis, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China. Electronic address:

Background/aim: Autosomal-recessive carnitine-acylcarnitine translocase deficiency (CACTD) is a rare disorder of long-chain fatty acid oxidation caused by variants in the SLC25A20 gene. Under fasting conditions, most newborns with severe CACTD experience sudden cardiac arrest and hypotonia, often leading to premature death due to rapid disease progression. Understanding of genetic factors and pathogenic mechanisms in CACTD is essential for its diagnosis, treatment, and prevention.

View Article and Find Full Text PDF

NSUN2-Mediated R-loop Stabilization as a Key Driver of Bladder Cancer Progression and Cisplatin Sensitivity.

Cancer Lett

December 2024

Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China. Electronic address:

R-loops are critical structures that play pivotal roles in regulating genomic stability and modulating gene expression. This study investigates the interactions between the 5-methylcytosine (mC) methyltransferase NOP2/Sun RNA methyltransferase 2 (NSUN2) and R-loops in the transcriptional dynamics and damage repair process of bladder cancer (BCa) cells. We observed markedly elevated levels of R-loops in BCa cells relative to normal urothelial cells.

View Article and Find Full Text PDF

A chicken protein hydrogel (HG) was enzymatically prepared and blended with a carnauba wax-based oleogel (OG) to form bigels (BG) in ratios of 50:50 to 90:10. These systems were infused with thyme essential oil (TEO) at 0.5 %, 1 %, and 2 % v/v to harness its antioxidant properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!