Develop and validate an accessible prediction model using machine learning (ML) to predict the risk of chemotherapy-induced myelosuppression (CIM) in children with Wilms' tumor (WT) before chemotherapy is administered, enabling early preventive management. A total of 1433 chemotherapy cycles in 437 children with WT who received chemotherapy in our hospital from January 2009 to March 2022 were retrospectively analyzed. Demographic data, clinicopathological characteristics, hematology and blood biochemistry baseline results, and medication information were collected. Six ML algorithms were used to construct prediction models, and the predictive efficacy of these models was evaluated to select the best model to predict the risk of grade ≥ 2 CIM in children with WT. A series of methods, such as the area under the receiver operating characteristic curve (AUROC), the calibration curve, and the decision curve analysis (DCA) were used to test the model's accuracy, discrimination, and clinical practicability. Grade ≥ 2 CIM occurred in 58.5% (839/1433) of chemotherapy cycles. Based on the results of the training and validation cohorts, we finally identified that the extreme gradient boosting (XGB) model has the best predictive efficiency and stability, with an AUROC of up to 0.981 in the training set and up to 0.896 in the test set. In addition, the calibration curve and the DCA showed that the XGB model had the best discrimination and clinical practicability. The variables were ranked according to the feature importance, and the five variables contributing the most to the model were hemoglobin (Hgb), white blood cell count (WBC), alkaline phosphatase, coadministration of highly toxic chemotherapy drugs, and albumin. The incidence of grade ≥ 2 CIM was not low in children with WT, which needs attention. The XGB model was developed to predict the risk of grade ≥ 2 CIM in children with WT for the first time. The model has good predictive performance and stability and has the potential to be translated into clinical applications. Based on this modeling and application approach, the extension of CIM prediction models to other pediatric malignancies could be expected.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9954251PMC
http://dx.doi.org/10.3390/cancers15041078DOI Listing

Publication Analysis

Top Keywords

grade ≥
16
≥ cim
16
predict risk
12
cim children
12
xgb model
12
model
8
prediction model
8
chemotherapy-induced myelosuppression
8
children wilms'
8
wilms' tumor
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!